These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22642500)

  • 1. Synthesis and utility of β-selenol-phenylalanine for native chemical ligation-deselenization chemistry.
    Malins LR; Payne RJ
    Org Lett; 2012 Jun; 14(12):3142-5. PubMed ID: 22642500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide ligation chemistry at selenol amino acids.
    Malins LR; Mitchell NJ; Payne RJ
    J Pept Sci; 2014 Feb; 20(2):64-77. PubMed ID: 24285588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of β-Thiol Phenylalanine for Applications in One-Pot Ligation-Desulfurization Chemistry.
    Malins LR; Giltrap AM; Dowman LJ; Payne RJ
    Org Lett; 2015 May; 17(9):2070-3. PubMed ID: 25860301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Utility of β-Selenophenylalanine and β-Selenoleucine in Diselenide-Selenoester Ligation.
    Wang X; Corcilius L; Premdjee B; Payne RJ
    J Org Chem; 2020 Feb; 85(3):1567-1578. PubMed ID: 31840993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenolysine: A New Tool for Traceless Isopeptide Bond Formation.
    Dardashti RN; Kumar S; Sternisha SM; Reddy PS; Miller BG; Metanis N
    Chemistry; 2020 Apr; 26(22):4952-4957. PubMed ID: 31960982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides.
    Rohde H; Seitz O
    Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins.
    Malins LR; Payne RJ
    Curr Opin Chem Biol; 2014 Oct; 22():70-8. PubMed ID: 25285753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of selenazoles by in situ cycloisomerization of propargyl selenoamides using oxygen-selenium exchange reaction.
    Pizzo C; Mahler SG
    J Org Chem; 2014 Feb; 79(4):1856-60. PubMed ID: 24490782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput synthesis of peptide α-thioesters: a safety catch linker approach enabling parallel hydrogen fluoride cleavage.
    Brust A; Schroeder CI; Alewood PF
    ChemMedChem; 2014 May; 9(5):1038-46. PubMed ID: 24591329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Synthesis of Proteins with Non-Strategically Placed Cysteines Using Selenazolidine and Selective Deselenization.
    Reddy PS; Dery S; Metanis N
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):992-5. PubMed ID: 26636774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenopeptide chemistry.
    Muttenthaler M; Alewood PF
    J Pept Sci; 2008 Dec; 14(12):1223-39. PubMed ID: 18951416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid phase synthesis of peptide-selenoesters.
    Ghassemian A; Vila-Farrés X; Alewood PF; Durek T
    Bioorg Med Chem; 2013 Jun; 21(12):3473-8. PubMed ID: 23608106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ generation of redox active peptides driven by selenoester mediated native chemical ligation.
    Rasale DB; Maity I; Das AK
    Chem Commun (Camb); 2014 Oct; 50(77):11397-400. PubMed ID: 25126652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [1-(Phenylseleno)alkyl]stannanes-mixed selenium/tin analogs of acetals: preparation from alpha-hydroxystannanes and use for generating selenium-stabilized carbanions.
    Fernandopulle SC; Clive DL; Yu M
    J Org Chem; 2008 Aug; 73(15):6018-21. PubMed ID: 18593186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot peptide ligation-desulfurization at glutamate.
    Cergol KM; Thompson RE; Malins LR; Turner P; Payne RJ
    Org Lett; 2014 Jan; 16(1):290-3. PubMed ID: 24294973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies.
    Ficht S; Payne RJ; Guy RT; Wong CH
    Chemistry; 2008; 14(12):3620-9. PubMed ID: 18278777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-derived s-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters.
    Ohta Y; Itoh S; Shigenaga A; Shintaku S; Fujii N; Otaka A
    Org Lett; 2006 Feb; 8(3):467-70. PubMed ID: 16435861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures.
    Pallan PS; Egli M
    Nat Protoc; 2007; 2(3):640-6. PubMed ID: 17406625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.