BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22642643)

  • 1. An experimental study of VEGF induced changes in vasoactivity in pig retinal arterioles and the influence of an anti-VEGF agent.
    Su EN; Cringle SJ; McAllister IL; Yu DY
    BMC Ophthalmol; 2012 May; 12():10. PubMed ID: 22642643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the vasoactive effects of the docosanoid unoprostone and selected prostanoids on isolated perfused retinal arterioles.
    Yu DY; Su EN; Cringle SJ; Schoch C; Percicot CP; Lambrou GN
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1499-504. PubMed ID: 11381053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of endothelium in vasomotor responses to endothelin system and protein kinase C activation in porcine retinal arterioles.
    Potts LB; Bradley PD; Xu W; Kuo L; Hein TW
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7587-94. PubMed ID: 24243985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local Modulation of Retinal Vein Tone.
    Yu DY; Su EN; Cringle SJ; Morgan WH; McAllister IL; Yu PK
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):412-9. PubMed ID: 26848880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histamine induces opposing vasoactive effects at different levels of the ocular vasculature.
    Su E; Yu D; Cringle S
    Curr Eye Res; 2005 Mar; 30(3):205-12. PubMed ID: 15804746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetrical response of the intraluminal and extraluminal surfaces of the porcine retinal artery to exogenous adenosine.
    Alder VA; Su EN; Yu DY; Cringle SJ; Yu PK
    Exp Eye Res; 1996 Nov; 63(5):557-64. PubMed ID: 8994359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Endothelium in Abnormal Cannabidiol-Induced Vasoactivity in Retinal Arterioles.
    Su EN; Kelly ME; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):4029-37. PubMed ID: 26098470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and molecular characterization of the endothelin system in retinal arterioles.
    Hein TW; Ren Y; Yuan Z; Xu W; Somvanshi S; Nagaoka T; Yoshida A; Kuo L
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3329-36. PubMed ID: 19151386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent roles of nitric oxide and rho kinase in vasomotor regulation of human retinal arterioles.
    Hein TW; Rosa RH; Yuan Z; Roberts E; Kuo L
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1583-90. PubMed ID: 19850828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombin-Induced Responses via Protease-Activated Receptor 1 Blocked by the Endothelium on Isolated Porcine Retinal Arterioles.
    Takahashi K; Omae T; Ono S; Kamiya T; Tanner A; Yoshida A
    Curr Eye Res; 2018 Nov; 43(11):1374-1382. PubMed ID: 29966442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constriction of retinal arterioles to endothelin-1: requisite role of rho kinase independent of protein kinase C and L-type calcium channels.
    Potts LB; Ren Y; Lu G; Kuo E; Ngo E; Kuo L; Hein TW
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2904-12. PubMed ID: 22427601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-induced relaxation of porcine retinal arterioles in vitro depends on prostaglandin E synthesized in the perivascular retinal tissue.
    Holmgaard K; Bek T
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5168-75. PubMed ID: 20375349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct vasodilatory effect of insulin on isolated retinal arterioles.
    Su EN; Yu DY; Alder VA; Cringle SJ; Yu PK
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2634-44. PubMed ID: 8977477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasoconstrictive effects of sodium fluorescein on retinal vessels is increased by light exposure.
    Su EN; Cringle SJ; Yu DY
    Curr Eye Res; 2007 Jan; 32(1):77-81. PubMed ID: 17364739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual effects of adenosine on the tone of porcine retinal arterioles in vitro.
    Riis-Vestergaard MJ; Misfeldt MW; Bek T
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1630-6. PubMed ID: 24557350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal development of retinal arteriolar endothelial dysfunction in porcine type 1 diabetes.
    Hein TW; Potts LB; Xu W; Yuen JZ; Kuo L
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):7943-9. PubMed ID: 23139282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinergic mechanisms and prostaglandin E receptors involved in ATP-induced relaxation of porcine retinal arterioles in vitro.
    Riis-Vestergaard MJ; Bek T
    Ophthalmic Res; 2015; 54(3):135-42. PubMed ID: 26376245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the muscarinic acetylcholine receptor subtype mediating cholinergic vasodilation in murine retinal arterioles.
    Gericke A; Sniatecki JJ; Goloborodko E; Steege A; Zavaritskaya O; Vetter JM; Grus FH; Patzak A; Wess J; Pfeiffer N
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7479-84. PubMed ID: 21873683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.