BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 22642863)

  • 1. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies.
    Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A
    Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups.
    Shimizu M; Fukuzumi H; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.
    Lavoine N; Bras J; Saito T; Isogai A
    Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization.
    Yang Q; Saito T; Berglund LA; Isogai A
    Nanoscale; 2015 Nov; 7(42):17957-63. PubMed ID: 26465589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.
    Shimizu M; Saito T; Fukuzumi H; Isogai A
    Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.
    Fujisawa S; Saito T; Kimura S; Iwata T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1541-6. PubMed ID: 23540813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril.
    Yeasmin S; Yeum JH; Yang SB
    Carbohydr Polym; 2020 Jul; 240():116307. PubMed ID: 32475577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents.
    Shimizu M; Saito T; Isogai A
    Biomacromolecules; 2014 May; 15(5):1904-9. PubMed ID: 24750066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix.
    Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA
    Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.
    Hiraoki R; Ono Y; Saito T; Isogai A
    Biomacromolecules; 2015 Feb; 16(2):675-81. PubMed ID: 25584418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities.
    Sun R; Zhu J; Wu H; Wang S; Li W; Sun Q
    Int J Biol Macromol; 2021 Jun; 180():510-522. PubMed ID: 33745975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective permeation of hydrogen gas using cellulose nanofibril film.
    Fukuzumi H; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.