BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 22642885)

  • 21. Extinction deficit and fear reinstatement after electrical stimulation of the amygdala: implications for kindling-associated fear and anxiety.
    Kellett J; Kokkinidis L
    Neuroscience; 2004; 127(2):277-87. PubMed ID: 15262319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of bed nucleus of the stria terminalis lesions on conditioned anxiety: aversive conditioning with long-duration conditional stimuli and reinstatement of extinguished fear.
    Waddell J; Morris RW; Bouton ME
    Behav Neurosci; 2006 Apr; 120(2):324-36. PubMed ID: 16719697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiac defense response as a predictor of fear learning.
    López R; Poy R; Pastor MC; Segarra P; Moltó J
    Int J Psychophysiol; 2009 Dec; 74(3):229-35. PubMed ID: 19782707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopaminergic mechanisms in the conditioned and unconditioned fear as assessed by the two-way avoidance and light switch-off tests.
    Reis FL; Masson S; de Oliveira AR; Brandão ML
    Pharmacol Biochem Behav; 2004 Oct; 79(2):359-65. PubMed ID: 15501313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using signaled barpressing tasks to study the neural substrates of appetitive and aversive learning in rats: behavioral manipulations and cerebellar lesions.
    Steinmetz JE; Logue SF; Miller DP
    Behav Neurosci; 1993 Dec; 107(6):941-54. PubMed ID: 8136069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a rat model to assess the efficacy of the somatosensory-evoked potential as indicator of analgesia.
    van Oostrom H; Stienen PJ; van den Bos R; de Groot HN; Hellebrekers LJ
    Brain Res Brain Res Protoc; 2005 May; 15(1):14-20. PubMed ID: 15878146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A characterization of approach and avoidance learning in alcohol-preferring and alcohol-nonpreferring rats.
    Blankenship MR; Finn PR; Steinmetz JE
    Alcohol Clin Exp Res; 1998 Sep; 22(6):1227-33. PubMed ID: 9756037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses.
    Wendler E; Gaspar JC; Ferreira TL; Barbiero JK; Andreatini R; Vital MA; Blaha CD; Winn P; Da Cunha C
    Neurobiol Learn Mem; 2014 Mar; 109():27-36. PubMed ID: 24291572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The amygdala: a potential player in timing CS-US intervals.
    Díaz-Mataix L; Tallot L; Doyère V
    Behav Processes; 2014 Jan; 101():112-22. PubMed ID: 23973708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila.
    Kim YC; Lee HG; Han KA
    J Neurosci; 2007 Jul; 27(29):7640-7. PubMed ID: 17634358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The development of an attentional bias for angry faces following Pavlovian fear conditioning.
    Pischek-Simpson LK; Boschen MJ; Neumann DL; Waters AM
    Behav Res Ther; 2009 Apr; 47(4):322-30. PubMed ID: 19232574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blocked and overshadowed stimuli are weakened in their ability to serve as blockers and second-order reinforcers in Pavlovian fear conditioning.
    Rauhut AS; McPhee JE; Ayres JJ
    J Exp Psychol Anim Behav Process; 1999 Jan; 25(1):45-67. PubMed ID: 9987858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of the autonomic nervous control of the heart during classical aversive vs appetitive conditioning in dog.
    Randall DC; Skinner TL; Billman GE
    J Auton Nerv Syst; 1985 Jun; 13(2):125-36. PubMed ID: 4020033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amygdaloid GABA, not glutamate neurotransmission or mRNA transcription controls footshock-associated fear arousal in the acoustic startle paradigm.
    Van Nobelen M; Kokkinidis L
    Neuroscience; 2006; 137(2):707-16. PubMed ID: 16289581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleus accumbens neurons dynamically respond to appetitive and aversive associative learning.
    Deseyve C; Domingues AV; Carvalho TTA; Armada G; Correia R; Vieitas-Gaspar N; Wezik M; Pinto L; Sousa N; Coimbra B; Rodrigues AJ; Soares-Cunha C
    J Neurochem; 2024 Mar; 168(3):312-327. PubMed ID: 38317429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement.
    Cahill L; McGaugh JL
    Behav Neurosci; 1990 Aug; 104(4):532-43. PubMed ID: 2206424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aversive Pavlovian control of instrumental behavior in humans.
    Geurts DE; Huys QJ; den Ouden HE; Cools R
    J Cogn Neurosci; 2013 Sep; 25(9):1428-41. PubMed ID: 23691985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissociable Learning Processes Underlie Human Pain Conditioning.
    Zhang S; Mano H; Ganesh G; Robbins T; Seymour B
    Curr Biol; 2016 Jan; 26(1):52-8. PubMed ID: 26711494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dorsal hippocampus and classical fear conditioning to tone and context in rats: effects of local NMDA-receptor blockade and stimulation.
    Bast T; Zhang WN; Feldon J
    Hippocampus; 2003; 13(6):657-75. PubMed ID: 12962312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleus accumbens dopamine and learned fear revisited: a review and some new findings.
    Levita L; Dalley JW; Robbins TW
    Behav Brain Res; 2002 Dec; 137(1-2):115-27. PubMed ID: 12445718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.