These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 22642902)
1. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Moeinzadeh S; Barati D; He X; Jabbari E Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902 [TBL] [Abstract][Full Text] [Related]
2. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. He X; Jabbari E Biomacromolecules; 2007 Mar; 8(3):780-92. PubMed ID: 17295540 [TBL] [Abstract][Full Text] [Related]
3. Mesoscale simulation of the effect of a lactide segment on the nanostructure of star poly(ethylene glycol-co-lactide)-acrylate macromonomers in aqueous solution. Moeinzadeh S; Jabbari E J Phys Chem B; 2012 Feb; 116(5):1536-43. PubMed ID: 22236036 [TBL] [Abstract][Full Text] [Related]
5. Nanostructure formation and transition from surface to bulk degradation in polyethylene glycol gels chain-extended with short hydroxy acid segments. Moeinzadeh S; Barati D; Sarvestani SK; Karaman O; Jabbari E Biomacromolecules; 2013 Aug; 14(8):2917-28. PubMed ID: 23859006 [TBL] [Abstract][Full Text] [Related]
6. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. Temenoff JS; Park H; Jabbari E; Sheffield TL; LeBaron RG; Ambrose CG; Mikos AG J Biomed Mater Res A; 2004 Aug; 70(2):235-44. PubMed ID: 15227668 [TBL] [Abstract][Full Text] [Related]
7. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Temenoff JS; Park H; Jabbari E; Conway DE; Sheffield TL; Ambrose CG; Mikos AG Biomacromolecules; 2004; 5(1):5-10. PubMed ID: 14715001 [TBL] [Abstract][Full Text] [Related]
8. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG J Biomed Mater Res A; 2004 Jun; 69(3):535-43. PubMed ID: 15127400 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels. Behravesh E; Mikos AG J Biomed Mater Res A; 2003 Sep; 66(3):698-706. PubMed ID: 12918054 [TBL] [Abstract][Full Text] [Related]
10. Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation. Betz MW; Modi PC; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP J Biomed Mater Res A; 2008 Sep; 86(3):662-70. PubMed ID: 18022839 [TBL] [Abstract][Full Text] [Related]
11. Bioresponsive phosphoester hydrogels for bone tissue engineering. Wang DA; Williams CG; Yang F; Cher N; Lee H; Elisseeff JH Tissue Eng; 2005; 11(1-2):201-13. PubMed ID: 15738675 [TBL] [Abstract][Full Text] [Related]
12. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Shin H; Temenoff JS; Mikos AG Biomacromolecules; 2003; 4(3):552-60. PubMed ID: 12741769 [TBL] [Abstract][Full Text] [Related]
13. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. Barati D; Shariati SRP; Moeinzadeh S; Melero-Martin JM; Khademhosseini A; Jabbari E J Control Release; 2016 Feb; 223():126-136. PubMed ID: 26721447 [TBL] [Abstract][Full Text] [Related]
14. Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. He X; Yang X; Jabbari E Langmuir; 2012 Mar; 28(12):5387-97. PubMed ID: 22372823 [TBL] [Abstract][Full Text] [Related]
15. Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. He X; Ma J; Jabbari E Int J Pharm; 2010 May; 390(2):107-16. PubMed ID: 20219655 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel: in vitro and in vivo studies. Ozeki M; Kuroda S; Kon K; Kasugai S J Biomater Appl; 2011 Mar; 25(7):663-84. PubMed ID: 20089608 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Gelation Characteristics of Photo-Crosslinkable Star Poly(ethylene oxide-co-lactide-glycolide acrylate) Macromonomers. Moeinzadeh S; Khorasani SN; Ma J; He X; Jabbari E Polymer (Guildf); 2011 Aug; 52(18):3887-3896. PubMed ID: 21927508 [TBL] [Abstract][Full Text] [Related]
20. Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells. Li Y; Yang C; Khan M; Liu S; Hedrick JL; Yang YY; Ee PL Biomaterials; 2012 Sep; 33(27):6533-41. PubMed ID: 22704846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]