These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22643421)
41. Performance evaluation for carbonation of steel-making slags in a slurry reactor. Chang EE; Chen CH; Chen YH; Pan SY; Chiang PC J Hazard Mater; 2011 Feb; 186(1):558-64. PubMed ID: 21168964 [TBL] [Abstract][Full Text] [Related]
42. Co-treatment of Waste From Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization. Zhao Q; Chu X; Mei X; Meng Q; Li J; Liu C; Saxén H; Zevenhoven R Front Chem; 2020; 8():571504. PubMed ID: 33195057 [TBL] [Abstract][Full Text] [Related]
43. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry. Pan SY; Chen YH; Chen CD; Shen AL; Lin M; Chiang PC Environ Sci Technol; 2015 Oct; 49(20):12380-7. PubMed ID: 26397167 [TBL] [Abstract][Full Text] [Related]
44. Effect of temperature, hydraulic residence time and elevated PCO2 on acid neutralization within a pulsed limestone bed reactor. Watten BJ; Lee PC; Sibrell PL; Timmons MB Water Res; 2007 Mar; 41(6):1207-14. PubMed ID: 17267008 [TBL] [Abstract][Full Text] [Related]
45. Manganese and limestone interactions during mine water treatment. Silva AM; Cruz FL; Lima RM; Teixeira MC; Leão VA J Hazard Mater; 2010 Sep; 181(1-3):514-20. PubMed ID: 20570440 [TBL] [Abstract][Full Text] [Related]
46. Role of multiple substrates (spent mushroom compost, ochre, steel slag, and limestone) in passive remediation of metal-containing acid mine drainage. Molahid VLM; Mohd Kusin F; Madzin Z Environ Technol; 2019 Apr; 40(10):1323-1336. PubMed ID: 29281556 [TBL] [Abstract][Full Text] [Related]
48. Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength. Faraone N; Tonello G; Furlani E; Maschio S Chemosphere; 2009 Nov; 77(8):1152-6. PubMed ID: 19740511 [TBL] [Abstract][Full Text] [Related]
49. The potential utilization of slag generated from iron- and steelmaking industries: a review. Zhang X; Chen J; Jiang J; Li J; Tyagi RD; Surampalli RY Environ Geochem Health; 2020 May; 42(5):1321-1334. PubMed ID: 31664635 [TBL] [Abstract][Full Text] [Related]
50. A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals. Cui M; Jang M; Cho SH; Khim J; Cannon FS J Hazard Mater; 2012 May; 215-216():122-8. PubMed ID: 22421342 [TBL] [Abstract][Full Text] [Related]
51. Carbon sequestration kinetic and storage capacity of ultramafic mining waste. Pronost J; Beaudoin G; Tremblay J; Larachi F; Duchesne J; Hébert R; Constantin M Environ Sci Technol; 2011 Nov; 45(21):9413-20. PubMed ID: 21919443 [TBL] [Abstract][Full Text] [Related]
52. Long-term evaluation of coal fly ash and mine tailings co-placement: a site-specific study. Yeheyis MB; Shang JQ; Yanful EK J Environ Manage; 2009 Oct; 91(1):237-44. PubMed ID: 19744768 [TBL] [Abstract][Full Text] [Related]
53. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent. Mohan D; Chander S J Hazard Mater; 2006 Oct; 137(3):1545-53. PubMed ID: 16784810 [TBL] [Abstract][Full Text] [Related]
54. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Harrison AL; Power IM; Dipple GM Environ Sci Technol; 2013 Jan; 47(1):126-34. PubMed ID: 22770473 [TBL] [Abstract][Full Text] [Related]
55. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge. Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663 [TBL] [Abstract][Full Text] [Related]
56. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Pérez-López R; Nieto JM; de Almodóvar GR Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643 [TBL] [Abstract][Full Text] [Related]
57. Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. Lee M; Paik IS; Kim I; Kang H; Lee S J Hazard Mater; 2007 Jun; 144(1-2):208-14. PubMed ID: 17101213 [TBL] [Abstract][Full Text] [Related]
58. Phosphorus removal performance of acid mine drainage from wastewater. Ruihua L; Lin Z; Tao T; Bo L J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994 [TBL] [Abstract][Full Text] [Related]
59. Effects of acid mine drainage and acidity on the activity of Choroterpes picteti (Ephemeroptera: Leptophlebiidae). Gerhardt A; de Bisthoven LJ; Soares AM Arch Environ Contam Toxicol; 2005 May; 48(4):450-8. PubMed ID: 15883674 [TBL] [Abstract][Full Text] [Related]
60. Remediation of Acid Mine Drainage (AMD) Using Steel Slag: Mechanism of the Alkalinity Decayed Process. Yang L; Tang Y; Cao D; Yang M Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833502 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]