BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22644029)

  • 1. Resistance to a novel antichlamydial compound is mediated through mutations in Chlamydia trachomatis secY.
    Sandoz KM; Eriksen SG; Jeffrey BM; Suchland RJ; Putman TE; Hruby DE; Jordan R; Rockey DD
    Antimicrob Agents Chemother; 2012 Aug; 56(8):4296-302. PubMed ID: 22644029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in the mutation frequency determining quinolone resistance in Chlamydia trachomatis serovars L2 and D.
    Rupp J; Solbach W; Gieffers J
    J Antimicrob Chemother; 2008 Jan; 61(1):91-4. PubMed ID: 18033786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of genes and mutations associated with Chlamydiae species' resistance to antibiotics.
    Benamri I; Azzouzi M; Sanak K; Moussa A; Radouani F
    Ann Clin Microbiol Antimicrob; 2021 Sep; 20(1):59. PubMed ID: 34479551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A series of ceramide analogs modified at the 1-position with potent activity against the intracellular growth of Chlamydia trachomatis.
    Saied EM; Banhart S; Bürkle SE; Heuer D; Arenz C
    Future Med Chem; 2015; 7(15):1971-80. PubMed ID: 26496536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness.
    Binet R; Maurelli AT
    BMC Microbiol; 2009 Dec; 9():279. PubMed ID: 20043826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a secY homolog from Chlamydia trachomatis.
    Gu L; Remacha M; Wenman WM; Kaul R
    Mol Gen Genet; 1994 May; 243(4):482-7. PubMed ID: 8202093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the Protein Phosphatase CppA Alters Development of Chlamydia trachomatis.
    Claywell JE; Matschke LM; Plunkett KN; Fisher DJ
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of a low-oxygen environment on the efficacy of antimicrobials against intracellular Chlamydia trachomatis.
    Shima K; Szaszák M; Solbach W; Gieffers J; Rupp J
    Antimicrob Agents Chemother; 2011 May; 55(5):2319-24. PubMed ID: 21321137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.
    Bobrovsky P; Manuvera V; Polina N; Podgorny O; Prusakov K; Govorun V; Lazarev V
    Infect Immun; 2016 Jul; 84(7):2124-2130. PubMed ID: 27160295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of
    Mestrovic T; Ljubin-Sternak S
    Front Biosci (Landmark Ed); 2018 Jan; 23(4):656-670. PubMed ID: 28930567
    [No Abstract]   [Full Text] [Related]  

  • 14. In vitro antichlamydial activity of garenoxacin against Chlamydia trachomatis.
    Futakuchi N; Nakatani M; Takahata M; Mitsuyama J
    J Infect Chemother; 2012 Aug; 18(4):428-35. PubMed ID: 22113367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinities of beta-lactams for penicillin binding proteins of Chlamydia trachomatis and their antichlamydial activities.
    Storey C; Chopra I
    Antimicrob Agents Chemother; 2001 Jan; 45(1):303-5. PubMed ID: 11120983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of the antichlamydial activity of putative type III secretion inhibitors by iron.
    Slepenkin A; Enquist PA; Hägglund U; de la Maza LM; Elofsson M; Peterson EM
    Infect Immun; 2007 Jul; 75(7):3478-89. PubMed ID: 17470544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial Resistance Screening in Chlamydia trachomatis by Optimized McCoy Cell Culture System and Direct qPCR-Based Monitoring of Chlamydial Growth.
    Meštrović T; Virok DP; Ljubin-Sternak S; Raffai T; Burián K; Vraneš J
    Methods Mol Biol; 2019; 2042():33-43. PubMed ID: 31385269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a strong and specific antichlamydial N-acylhydrazone.
    Zhang H; Kunadia A; Lin Y; Fondell JD; Seidel D; Fan H
    PLoS One; 2017; 12(10):e0185783. PubMed ID: 28973037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of mutation in macrolide resistance genes in Chlamydia trachomatis clinical isolates with decreased susceptibility to azithromycin.
    Bhengraj AR; Srivastava P; Mittal A
    Int J Antimicrob Agents; 2011 Aug; 38(2):178-9. PubMed ID: 21570258
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.