These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22644029)

  • 21. Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity.
    Engström P; Nguyen BD; Normark J; Nilsson I; Bastidas RJ; Gylfe A; Elofsson M; Fields KA; Valdivia RH; Wolf-Watz H; Bergström S
    J Bacteriol; 2013 Sep; 195(18):4221-30. PubMed ID: 23852872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High dynamic range detection of Chlamydia trachomatis growth by direct quantitative PCR of the infected cells.
    Eszik I; Lantos I; Önder K; Somogyvári F; Burián K; Endrész V; Virok DP
    J Microbiol Methods; 2016 Jan; 120():15-22. PubMed ID: 26578244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis.
    Demars R; Weinfurter J; Guex E; Lin J; Potucek Y
    J Bacteriol; 2007 Feb; 189(3):991-1003. PubMed ID: 17122345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activities of rifamycin derivatives against wild-type and rpoB mutants of Chlamydia trachomatis.
    Xia M; Suchland RJ; Carswell JA; Van Duzer J; Buxton DK; Brown K; Rothstein DM; Stamm WE
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3974-6. PubMed ID: 16127086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp.
    Binet R; Maurelli AT
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2865-73. PubMed ID: 15980362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis.
    Park N; Yamanaka K; Tran D; Chandrangsu P; Akers JC; de Leon JC; Morrissette NS; Selsted ME; Tan M
    J Antimicrob Chemother; 2009 Jan; 63(1):115-23. PubMed ID: 18957395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Throughput Screening for Novel Inhibitors of Intracellular Pathogens, Including Chlamydia trachomatis.
    Brown AC; Kushner NL
    Methods Mol Biol; 2019; 2042():279-286. PubMed ID: 31385282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro activity of ciprofloxacin against Chlamydia trachomatis and Ureaplasma urealyticum.
    Rumpianesi F; Sambri V; Bertini S; Tamba I; Cevenini R
    Chemioterapia; 1984 Jun; 3(3):173-4. PubMed ID: 6529772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncommon occurrence of fluoroquinolone resistance-associated alterations in GyrA and ParC in clinical strains of Chlamydia trachomatis.
    Yokoi S; Yasuda M; Ito S; Takahashi Y; Ishihara S; Deguchi T; Maeda S; Kubota Y; Tamaki M; Fukushi H
    J Infect Chemother; 2004 Oct; 10(5):262-7. PubMed ID: 16163459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chlamydia trachomatis clinical isolates identified as tetracycline resistant do not exhibit resistance in vitro: whole-genome sequencing reveals a mutation in porB but no evidence for tetracycline resistance genes.
    O'Neill CE; Seth-Smith HMB; Van Der Pol B; Harris SR; Thomson NR; Cutcliffe LT; Clarke IN
    Microbiology (Reading); 2013 Apr; 159(Pt 4):748-756. PubMed ID: 23378575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure.
    Tipples G; McClarty G
    J Bacteriol; 1991 Aug; 173(16):4932-40. PubMed ID: 1860812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of antiseptics on Chlamydia trachomatis growth.
    Párducz L; Eszik I; Wagner G; Burián K; Endrész V; Virok DP
    Lett Appl Microbiol; 2016 Oct; 63(4):260-7. PubMed ID: 27472980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and Assessment of 3-Substituted Phenazines as Novel Antichlamydial Agents.
    Bao X; Liu Z; Ni M; Xia C; Xu S; Yang S; Zhao Y
    Med Chem; 2020; 16(3):413-421. PubMed ID: 31284867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dibenzocyclooctadiene lignans from Schisandra spp. selectively inhibit the growth of the intracellular bacteria Chlamydia pneumoniae and Chlamydia trachomatis.
    Hakala E; Hanski L; Uvell H; Yrjönen T; Vuorela H; Elofsson M; Vuorela PM
    J Antibiot (Tokyo); 2015 Oct; 68(10):609-14. PubMed ID: 25944533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel Detection Strategy To Rapidly Evaluate the Efficacy of Antichlamydial Agents.
    Zhang Y; Xian Y; Gao L; Elaasar H; Wang Y; Tauhid L; Hua Z; Shen L
    Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27855081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis.
    Engström P; Krishnan KS; Ngyuen BD; Chorell E; Normark J; Silver J; Bastidas RJ; Welch MD; Hultgren SJ; Wolf-Watz H; Valdivia RH; Almqvist F; Bergström S
    mBio; 2014 Dec; 6(1):e02304-14. PubMed ID: 25550323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital Chlamydia model.
    Koroleva EA; Kobets NV; Zayakin ES; Luyksaar SI; Shabalina LA; Zigangirova NA
    Biomed Res Int; 2015; 2015():484853. PubMed ID: 25695086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.