These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 22644236)
1. Isolating early cortical generators of visual-evoked activity: a systems identification approach. Murphy JW; Kelly SP; Foxe JJ; Lalor EC Exp Brain Res; 2012 Jul; 220(2):191-9. PubMed ID: 22644236 [TBL] [Abstract][Full Text] [Related]
2. Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping. Lalor EC; Kelly SP; Foxe JJ Neuroscience; 2012 Aug; 218():226-34. PubMed ID: 22683721 [TBL] [Abstract][Full Text] [Related]
3. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component. Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997 [TBL] [Abstract][Full Text] [Related]
4. Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account? Lalor EC; De Sanctis P; Krakowski MI; Foxe JJ Schizophr Res; 2012 Aug; 139(1-3):246-52. PubMed ID: 22704644 [TBL] [Abstract][Full Text] [Related]
5. Dissecting the cellular contributions to early visual sensory processing deficits in schizophrenia using the VESPA evoked response. Lalor EC; Yeap S; Reilly RB; Pearlmutter BA; Foxe JJ Schizophr Res; 2008 Jan; 98(1-3):256-64. PubMed ID: 17996424 [TBL] [Abstract][Full Text] [Related]
6. Cortical sources of the early components of the visual evoked potential. Di Russo F; Martínez A; Sereno MI; Pitzalis S; Hillyard SA Hum Brain Mapp; 2002 Feb; 15(2):95-111. PubMed ID: 11835601 [TBL] [Abstract][Full Text] [Related]
7. The VESPA: a method for the rapid estimation of a visual evoked potential. Lalor EC; Pearlmutter BA; Reilly RB; McDarby G; Foxe JJ Neuroimage; 2006 Oct; 32(4):1549-61. PubMed ID: 16875844 [TBL] [Abstract][Full Text] [Related]
8. Identification of the neural sources of the pattern-reversal VEP. Di Russo F; Pitzalis S; Spitoni G; Aprile T; Patria F; Spinelli D; Hillyard SA Neuroimage; 2005 Feb; 24(3):874-86. PubMed ID: 15652322 [TBL] [Abstract][Full Text] [Related]
9. Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex. Im CH; Gururajan A; Zhang N; Chen W; He B J Neurosci Methods; 2007 Mar; 161(1):142-54. PubMed ID: 17098289 [TBL] [Abstract][Full Text] [Related]
10. Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task. Zalar B; Martin T; Kavcic V Int J Psychophysiol; 2015 Jun; 96(3):125-33. PubMed ID: 25889693 [TBL] [Abstract][Full Text] [Related]
11. Impact of Hyperventilation and Sleep Deprivation Upon Visual Evoked Potentials in Patients with Epilepsy. Dziadkowiak E; Podemski R Neurol India; 2019; 67(4):1027-1032. PubMed ID: 31512627 [TBL] [Abstract][Full Text] [Related]
12. Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man. Sannita WG; Lopez L; Piras C; Di Bon G Electroencephalogr Clin Neurophysiol; 1995 May; 96(3):206-18. PubMed ID: 7750446 [TBL] [Abstract][Full Text] [Related]
13. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis. Kiiski HS; Ní Riada S; Lalor EC; Gonçalves NR; Nolan H; Whelan R; Lonergan R; Kelly S; O'Brien MC; Kinsella K; Bramham J; Burke T; Ó Donnchadha S; Hutchinson M; Tubridy N; Reilly RB PLoS One; 2016; 11(1):e0146084. PubMed ID: 26726800 [TBL] [Abstract][Full Text] [Related]
14. The relationship between the visual evoked potential and the gamma band investigated by blind and semi-blind methods. Porcaro C; Ostwald D; Hadjipapas A; Barnes GR; Bagshaw AP Neuroimage; 2011 Jun; 56(3):1059-71. PubMed ID: 21396460 [TBL] [Abstract][Full Text] [Related]
15. Visual evoked potentials in response to pattern reversal in the cat cortex. Pérez-Cobo JC; López de Armentia M; Sánchez-Suero S; Pérez-Arroyo M Rev Esp Fisiol; 1994 Dec; 50(4):205-10. PubMed ID: 7754162 [TBL] [Abstract][Full Text] [Related]
16. Altered cortical visual processing in individuals with a spreading photoparoxysmal EEG response. Siniatchkin M; Moeller F; Shepherd A; Siebner H; Stephani U Eur J Neurosci; 2007 Jul; 26(2):529-36. PubMed ID: 17650123 [TBL] [Abstract][Full Text] [Related]
17. Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans. Gebodh N; Vanegas MI; Kelly SP Brain Topogr; 2017 Jul; 30(4):450-460. PubMed ID: 28474167 [TBL] [Abstract][Full Text] [Related]
18. Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. Foxe JJ; Doniger GM; Javitt DC Neuroreport; 2001 Dec; 12(17):3815-20. PubMed ID: 11726801 [TBL] [Abstract][Full Text] [Related]
19. The relationship between visually evoked cerebral blood flow velocity responses and visual-evoked potentials. Zaletel M; Strucl M; Rodi Z; Zvan B Neuroimage; 2004 Aug; 22(4):1784-9. PubMed ID: 15275934 [TBL] [Abstract][Full Text] [Related]
20. Correspondence of visual evoked potentials with FMRI signals in human visual cortex. Whittingstall K; Wilson D; Schmidt M; Stroink G Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]