These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 22644668)
1. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Samadi N; Abadian N; Ahmadkhaniha R; Amini F; Dalili D; Rastkari N; Safaripour E; Mohseni FA Folia Microbiol (Praha); 2012 Nov; 57(6):501-8. PubMed ID: 22644668 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
3. Biosurfactant complexed with arginine has antibiofilm activity against methicillin-resistant Dias Barroso FD; da Silva LJ; Queiroz HA; do Amaral Valente Sá LG; da Silva AR; da Silva CR; de Andrade Neto JB; Cavalcanti BC; de Moraes MO; Pinazo A; Pérez L; Nobre Júnior HV Future Microbiol; 2024; 19(8):667-679. PubMed ID: 38864708 [TBL] [Abstract][Full Text] [Related]
4. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related]
5. [Construction of mono/di-rhamnolipid ratios-manipulable strains and characterization of their corresponding surfactants' activity]. Zhao M; Zheng Y; Yu H; Ma L Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):786-798. PubMed ID: 38545977 [TBL] [Abstract][Full Text] [Related]
6. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178 [TBL] [Abstract][Full Text] [Related]
7. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
8. Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil. Arutchelvi J; Doble M Lett Appl Microbiol; 2010 Jul; 51(1):75-82. PubMed ID: 20477962 [TBL] [Abstract][Full Text] [Related]
9. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water. Liu JF; Wu G; Yang SZ; Mu BZ World J Microbiol Biotechnol; 2014 May; 30(5):1473-84. PubMed ID: 24297330 [TBL] [Abstract][Full Text] [Related]
11. High-Yield Di-Rhamnolipid Production by Li Z; Zhang Y; Lin J; Wang W; Li S Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013 [TBL] [Abstract][Full Text] [Related]
12. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Benincasa M; Abalos A; Oliveira I; Manresa A Antonie Van Leeuwenhoek; 2004 Jan; 85(1):1-8. PubMed ID: 15028876 [TBL] [Abstract][Full Text] [Related]
13. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Wang X; Li D; Yue S; Yuan Z; Li S Molecules; 2024 Apr; 29(9):. PubMed ID: 38731483 [TBL] [Abstract][Full Text] [Related]
14. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Sanjivkumar M; Deivakumari M; Immanuel G Arch Microbiol; 2021 Jul; 203(5):2297-2314. PubMed ID: 33646338 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a New Rhamnolipid Biosurfactant Complex from Shreve GS; Makula R Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861084 [TBL] [Abstract][Full Text] [Related]
16. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Sana S; Datta S; Biswas D; Sengupta D Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):579-585. PubMed ID: 28988129 [TBL] [Abstract][Full Text] [Related]
17. Rhamnolipids functionalized with basic amino acids: Synthesis, aggregation behavior, antibacterial activity and biodegradation studies. Ramos da Silva A; Manresa MÁ; Pinazo A; García MT; Pérez L Colloids Surf B Biointerfaces; 2019 Sep; 181():234-243. PubMed ID: 31151036 [TBL] [Abstract][Full Text] [Related]
18. Coriander essential oil and linalool - interactions with antibiotics against Gram-positive and Gram-negative bacteria. Aelenei P; Rimbu CM; Guguianu E; Dimitriu G; Aprotosoaie AC; Brebu M; Horhogea CE; Miron A Lett Appl Microbiol; 2019 Feb; 68(2):156-164. PubMed ID: 30471142 [TBL] [Abstract][Full Text] [Related]
19. Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Thanomsub B; Pumeechockchai W; Limtrakul A; Arunrattiyakorn P; Petchleelaha W; Nitoda T; Kanzaki H Bioresour Technol; 2007 Mar; 98(5):1149-53. PubMed ID: 16781144 [TBL] [Abstract][Full Text] [Related]
20. Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Rahman PK; Pasirayi G; Auger V; Ali Z Biotechnol Appl Biochem; 2010 Feb; 55(1):45-52. PubMed ID: 19958287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]