These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22644672)

  • 1. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells.
    Shi W; Li X; Ma H
    Angew Chem Int Ed Engl; 2012 Jun; 51(26):6432-5. PubMed ID: 22644672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping.
    Du F; Ming Y; Zeng F; Yu C; Wu S
    Nanotechnology; 2013 Sep; 24(36):365101. PubMed ID: 23942146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating nanoparticle sensor design for intracellular pH measurements.
    Benjaminsen RV; Sun H; Henriksen JR; Christensen NM; Almdal K; Andresen TL
    ACS Nano; 2011 Jul; 5(7):5864-73. PubMed ID: 21707035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized intracellular pH measurement using a ratiometric photoinduced electron-transfer-based nanosensor.
    Marín MJ; Galindo F; Thomas P; Russell DA
    Angew Chem Int Ed Engl; 2012 Sep; 51(38):9657-61. PubMed ID: 22907743
    [No Abstract]   [Full Text] [Related]  

  • 5. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the biocompatibility of carbon nanodots for cell imaging.
    Mao QX; Han L; Shu Y; Chen XW; Wang JH
    Talanta; 2016 Dec; 161():54-61. PubMed ID: 27769444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanogel for ratiometric fluorescent sensing of intracellular pH values.
    Peng HS; Stolwijk JA; Sun LN; Wegener J; Wolfbeis OS
    Angew Chem Int Ed Engl; 2010 Jun; 49(25):4246-9. PubMed ID: 20446280
    [No Abstract]   [Full Text] [Related]  

  • 8. Self-assembled supramolecular nanoprobes for ratiometric fluorescence measurement of intracellular pH values.
    He L; Yang X; Zhao F; Wang K; Wang Q; Liu J; Huang J; Li W; Yang M
    Anal Chem; 2015 Feb; 87(4):2459-65. PubMed ID: 25610947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent push-pull pH-responsive probes for ratiometric detection of intracellular pH.
    Ipuy M; Billon C; Micouin G; Samarut J; Andraud C; Bretonnière Y
    Org Biomol Chem; 2014 Jun; 12(22):3641-8. PubMed ID: 24756609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.
    Stanca SE; Nietzsche S; Fritzsche W; Cranfield CG; Biskup C
    Nanotechnology; 2010 Feb; 21(5):055501. PubMed ID: 20023314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous analysis of intracellular pH and Ca2+ from cell populations.
    Martinez-Zaguilan R; Tompkins LS; Gillies RJ; Lynch RM
    Methods Mol Biol; 2006; 312():269-87. PubMed ID: 16422205
    [No Abstract]   [Full Text] [Related]  

  • 12. Intracellular pH sensing using autofluorescence lifetime microscopy.
    Ogikubo S; Nakabayashi T; Adachi T; Islam MS; Yoshizawa T; Kinjo M; Ohta N
    J Phys Chem B; 2011 Sep; 115(34):10385-90. PubMed ID: 21776989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of Curcumin.
    Gong X; Wang H; Liu Y; Hu Q; Gao Y; Yang Z; Shuang S; Dong C
    Anal Chim Acta; 2019 May; 1057():132-144. PubMed ID: 30832912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent indicators for intracellular pH.
    Han J; Burgess K
    Chem Rev; 2010 May; 110(5):2709-28. PubMed ID: 19831417
    [No Abstract]   [Full Text] [Related]  

  • 15. A cell-penetrating ratiometric probe for simultaneous measurement of lysosomal and cytosolic pH change.
    Xia MC; Cai L; Zhang S; Zhang X
    Talanta; 2018 Feb; 178():355-361. PubMed ID: 29136833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Media composition: pH and buffers.
    Swain JE
    Methods Mol Biol; 2012; 912():161-75. PubMed ID: 22829374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.
    Zhang Y; Guo S; Cheng S; Ji X; He Z
    Biosens Bioelectron; 2017 Aug; 94():478-484. PubMed ID: 28342376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions.
    Wang Y; Lu L; Peng H; Xu J; Wang F; Qi R; Xu Z; Zhang W
    Chem Commun (Camb); 2016 Jul; 52(59):9247-50. PubMed ID: 27353571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile water soluble fluorescent probe for ratiometric sensing of Hg2+ and bovine serum albumin.
    Wen J; Geng Z; Yin Y; Wang Z
    Dalton Trans; 2011 Oct; 40(38):9737-45. PubMed ID: 21858313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.