BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22645132)

  • 21. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins.
    Dunstone MA; Tweten RK
    Curr Opin Struct Biol; 2012 Jun; 22(3):342-9. PubMed ID: 22658510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins.
    Evans JC; Johnstone BA; Lawrence SL; Morton CJ; Christie MP; Parker MW; Tweten RK
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Apicomplexan CDC/MACPF-like pore-forming proteins.
    Wade KR; Tweten RK
    Curr Opin Microbiol; 2015 Aug; 26():48-52. PubMed ID: 26025132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin.
    Wade KR; Hotze EM; Kuiper MJ; Morton CJ; Parker MW; Tweten RK
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2204-9. PubMed ID: 25646411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a streptococcal cholesterol-dependent cytolysin with a lewis y and b specific lectin domain.
    Farrand S; Hotze E; Friese P; Hollingshead SK; Smith DF; Cummings RD; Dale GL; Tweten RK
    Biochemistry; 2008 Jul; 47(27):7097-107. PubMed ID: 18553932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Research progress on the MACPF/CDC family of pore-forming toxins].
    Qiao X; Wu FF; Su P; Li QW
    Yi Chuan; 2010 Nov; 32(11):1126-32. PubMed ID: 21513163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revisiting the role of cholesterol in regulating the pore-formation mechanism of
    Kathuria R; Mondal AK; Sharma R; Bhattacharyya S; Chattopadhyay K
    Biochem J; 2018 Oct; 475(19):3039-3055. PubMed ID: 30206140
    [No Abstract]   [Full Text] [Related]  

  • 28. Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin.
    Soltani CE; Hotze EM; Johnson AE; Tweten RK
    J Biol Chem; 2007 May; 282(21):15709-16. PubMed ID: 17412689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxin Vibrio cholerae cytolysin.
    Rai AK; Chattopadhyay K
    Mol Microbiol; 2015 Sep; 97(6):1051-62. PubMed ID: 26059432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition.
    Kulma M; Kacprzyk-Stokowiec A; Traczyk G; Kwiatkowska K; Dadlez M
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):110-122. PubMed ID: 30463694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional mapping of the lectin activity site on the β-prism domain of vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin.
    Rai AK; Paul K; Chattopadhyay K
    J Biol Chem; 2013 Jan; 288(3):1665-73. PubMed ID: 23209283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stonefish toxin defines an ancient branch of the perforin-like superfamily.
    Ellisdon AM; Reboul CF; Panjikar S; Huynh K; Oellig CA; Winter KL; Dunstone MA; Hodgson WC; Seymour J; Dearden PK; Tweten RK; Whisstock JC; McGowan S
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15360-5. PubMed ID: 26627714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.
    Farrand AJ; Hotze EM; Sato TK; Wade KR; Wimley WC; Johnson AE; Tweten RK
    J Biol Chem; 2015 Jul; 290(29):17733-17744. PubMed ID: 26032415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins.
    Shepard LA; Shatursky O; Johnson AE; Tweten RK
    Biochemistry; 2000 Aug; 39(33):10284-93. PubMed ID: 10956018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol-dependent cytolysins: from water-soluble state to membrane pore.
    Christie MP; Johnstone BA; Tweten RK; Parker MW; Morton CJ
    Biophys Rev; 2018 Oct; 10(5):1337-1348. PubMed ID: 30117093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cholesterol-dependent cytolysins.
    Tweten RK; Parker MW; Johnson AE
    Curr Top Microbiol Immunol; 2001; 257():15-33. PubMed ID: 11417120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae.
    Gilbert RJ; Jiménez JL; Chen S; Tickle IJ; Rossjohn J; Parker M; Andrew PW; Saibil HR
    Cell; 1999 May; 97(5):647-55. PubMed ID: 10367893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of an improved drug delivery system tool with enhanced versatility in cell-targeting.
    Tabata A; Ohkubo Y; Tamura M; Tomoyasu T; Ohkura K; Nagamune H
    Anticancer Res; 2013 Jul; 33(7):2905-10. PubMed ID: 23780978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholesterol specificity of some heptameric beta-barrel pore-forming bacterial toxins: structural and functional aspects.
    Harris JR; Palmer M
    Subcell Biochem; 2010; 51():579-96. PubMed ID: 20213559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Membrane Attack Complex/Perforin Superfamily.
    Moreno-Hagelsieb G; Vitug B; Medrano-Soto A; Saier MH
    J Mol Microbiol Biotechnol; 2017; 27(4):252-267. PubMed ID: 29145176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.