These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22645266)

  • 1. Foreground object detection using top-down information based on EM framework.
    Liu Z; Huang K; Tan T
    IEEE Trans Image Process; 2012 Sep; 21(9):4204-17. PubMed ID: 22645266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Video object tracking in the compressed domain using spatio-temporal Markov random fields.
    Khatoonabadi SH; Bajić IV
    IEEE Trans Image Process; 2013 Jan; 22(1):300-13. PubMed ID: 22910117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian modeling of dynamic scenes for object detection.
    Sheikh Y; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2005 Nov; 27(11):1778-92. PubMed ID: 16285376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian framework for image segmentation with spatially varying mixtures.
    Nikou C; Likas AC; Galatsanos NP
    IEEE Trans Image Process; 2010 Sep; 19(9):2278-89. PubMed ID: 20378472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OBJCUT: efficient segmentation using top-down and bottom-up cues.
    Kumar MP; Torr PH; Zisserman A
    IEEE Trans Pattern Anal Mach Intell; 2010 Mar; 32(3):530-45. PubMed ID: 20075476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
    Zhang Y; Brady M; Smith S
    IEEE Trans Med Imaging; 2001 Jan; 20(1):45-57. PubMed ID: 11293691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy between object recognition and image segmentation using the expectation-maximization algorithm.
    Kokkinos I; Maragos P
    IEEE Trans Pattern Anal Mach Intell; 2009 Aug; 31(8):1486-501. PubMed ID: 19542581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving-object segmentation using a foreground history map.
    Kwak S; Bae G; Byun H
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):180-7. PubMed ID: 20126229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning a family of detectors via multiplicative kernels.
    Yuan Q; Thangali A; Ablavsky V; Sclaroff S
    IEEE Trans Pattern Anal Mach Intell; 2011 Mar; 33(3):514-30. PubMed ID: 20548107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A constraint-based evolutionary learning approach to the expectation maximization for optimal estimation of the hidden Markov model for speech signal modeling.
    Huda S; Yearwood J; Togneri R
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):182-97. PubMed ID: 19068441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A MAP-based algorithm for spectroscopic semi-blind deconvolution.
    Liu H; Zhang T; Yan L; Fang H; Chang Y
    Analyst; 2012 Aug; 137(16):3862-73. PubMed ID: 22768389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ML parameter estimation for Markov random fields with applications to Bayesian tomography.
    Saquib SS; Bouman CA; Sauer K
    IEEE Trans Image Process; 1998; 7(7):1029-44. PubMed ID: 18276318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamic conditional random field model for foreground and shadow segmentation.
    Wang Y; Loe KF; Wu JK
    IEEE Trans Pattern Anal Mach Intell; 2006 Feb; 28(2):279-89. PubMed ID: 16468623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian foreground and shadow detection in uncertain frame rate surveillance videos.
    Benedek C; Sziranyi T
    IEEE Trans Image Process; 2008 Apr; 17(4):608-21. PubMed ID: 18390368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attraction-repulsion expectation-maximization algorithm for image reconstruction and sensor field estimation.
    Hong H; Schonfeld D
    IEEE Trans Image Process; 2009 Sep; 18(9):2004-11. PubMed ID: 19502130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic image segmentation for concealed object detection using the expectation-maximization algorithm.
    Lee DS; Yeom S; Son JY; Kim SH
    Opt Express; 2010 May; 18(10):10659-67. PubMed ID: 20588918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.
    Baek J; Son YS; McLachlan GJ
    Bioinformatics; 2007 Feb; 23(4):458-65. PubMed ID: 17166856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical regularization in linearized microwave imaging through MRF-based MAP estimation: hyperparameter estimation and image computation.
    Pascazio V; Ferraiuolo G
    IEEE Trans Image Process; 2003; 12(5):572-82. PubMed ID: 18237933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional stereo matching using expectation-maximization.
    Xiong W; Chung HS; Jia J
    IEEE Trans Pattern Anal Mach Intell; 2009 Mar; 31(3):428-43. PubMed ID: 19147873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient subwindow search: a branch and bound framework for object localization.
    Lampert CH; Blaschko MB; Hofmann T
    IEEE Trans Pattern Anal Mach Intell; 2009 Dec; 31(12):2129-42. PubMed ID: 19834136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.