These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22645370)

  • 1. Flexibility of the metal-binding region in apo-cupredoxins.
    Zaballa ME; Abriata LA; Donaire A; Vila AJ
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9254-9. PubMed ID: 22645370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of apocupredoxins: insights into the formation and stabilization of copper sites under entatic control.
    Abriata LA; Vila AJ; Dal Peraro M
    J Biol Inorg Chem; 2014 Jun; 19(4-5):565-75. PubMed ID: 24477946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.
    Giannotti MI; Cabeza de Vaca I; Artés JM; Sanz F; Guallar V; Gorostiza P
    J Phys Chem B; 2015 Sep; 119(36):12050-8. PubMed ID: 26305718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orchestrating copper binding: structure and variations on the cupredoxin fold.
    Guo J; Fisher OS
    J Biol Inorg Chem; 2022 Sep; 27(6):529-540. PubMed ID: 35994119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-binding properties of an engineered purple CuA center in azurin.
    Hay MT; Lu Y
    J Biol Inorg Chem; 2000 Dec; 5(6):699-712. PubMed ID: 11128997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.
    Roger M; Biaso F; Castelle CJ; Bauzan M; Chaspoul F; Lojou E; Sciara G; Caffarri S; Giudici-Orticoni MT; Ilbert M
    PLoS One; 2014; 9(6):e98941. PubMed ID: 24932914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes.
    Choi M; Davidson VL
    Metallomics; 2011 Feb; 3(2):140-51. PubMed ID: 21258692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin.
    Li C; Yanagisawa S; Martins BM; Messerschmidt A; Banfield MJ; Dennison C
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7258-63. PubMed ID: 16651527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the dynamics of the metal-binding loop region controls the acid transition in cupredoxins.
    Paltrinieri L; Borsari M; Battistuzzi G; Sola M; Dennison C; de Groot BL; Corni S; Bortolotti CA
    Biochemistry; 2013 Oct; 52(42):7397-404. PubMed ID: 24063705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop-contraction mutagenesis of type 1 copper sites.
    Yanagisawa S; Dennison C
    J Am Chem Soc; 2004 Dec; 126(48):15711-9. PubMed ID: 15571393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin.
    Jeuken LJ; Ubbink M; Bitter JH; van Vliet P; Meyer-Klaucke W; Canters GW
    J Mol Biol; 2000 Jun; 299(3):737-55. PubMed ID: 10835281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designed azurins show lower reorganization free energies for intraprotein electron transfer.
    Farver O; Marshall NM; Wherland S; Lu Y; Pecht I
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10536-40. PubMed ID: 23759745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake.
    Pérez-Henarejos SA; Alcaraz LA; Donaire A
    Arch Biochem Biophys; 2015 Oct; 584():134-48. PubMed ID: 26334718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.
    Fernández CO; Niizeki T; Kohzuma T; Vila AJ
    J Biol Inorg Chem; 2003 Jan; 8(1-2):75-82. PubMed ID: 12459901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution.
    Hart PJ; Nersissian AM; Herrmann RG; Nalbandyan RM; Valentine JS; Eisenberg D
    Protein Sci; 1996 Nov; 5(11):2175-83. PubMed ID: 8931136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal binding to Pseudomonas aeruginosa azurin: a kinetic investigation.
    Naro F; Tordi MG; Giacometti GM; Tomei F; Timperio AM; Zolla L
    Z Naturforsch C J Biosci; 2000; 55(5-6):347-54. PubMed ID: 10928545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo design and characterization of copper metallopeptides inspired by native cupredoxins.
    Plegaria JS; Duca M; Tard C; Friedlander TJ; Deb A; Penner-Hahn JE; Pecoraro VL
    Inorg Chem; 2015 Oct; 54(19):9470-82. PubMed ID: 26381361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the coupled distortion model: structural analysis of the single domain cupredoxin AcoP, a green mononuclear copper centre with original features.
    Roger M; Leone P; Blackburn NJ; Horrell S; Chicano TM; Biaso F; Giudici-Orticoni MT; Abriata LA; Hura GL; Hough MA; Sciara G; Ilbert M
    Dalton Trans; 2024 Jan; 53(4):1794-1808. PubMed ID: 38170898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-induced spectroscopic and structural changes in short peptides derived from azurin.
    Das D; Mitra S; Kumar R; Banerjee S; Koti Ainavarapu SR
    Arch Biochem Biophys; 2020 Jul; 687():108388. PubMed ID: 32343975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traversing the Red-Green-Blue Color Spectrum in Rationally Designed Cupredoxins.
    Koebke KJ; Alfaro VS; Pinter TBJ; Deb A; Lehnert N; Tard C; Penner-Hahn JE; Pecoraro VL
    J Am Chem Soc; 2020 Sep; 142(36):15282-15294. PubMed ID: 32786767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.