These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 22645649)
1. Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches. Zhang T; Schmierer B; Novák B Open Biol; 2011 Nov; 1(3):110009. PubMed ID: 22645649 [TBL] [Abstract][Full Text] [Related]
2. Regulation of cyclin-substrate docking by a G1 arrest signaling pathway and the Cdk inhibitor Far1. Pope PA; Bhaduri S; Pryciak PM Curr Biol; 2014 Jun; 24(12):1390-1396. PubMed ID: 24909323 [TBL] [Abstract][Full Text] [Related]
3. Identification of the molecular mechanisms for cell-fate selection in budding yeast through mathematical modeling. Li Y; Yi M; Zou X Biophys J; 2013 May; 104(10):2282-94. PubMed ID: 23708368 [TBL] [Abstract][Full Text] [Related]
5. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Tyers M Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7772-6. PubMed ID: 8755551 [TBL] [Abstract][Full Text] [Related]
6. Modeling the START transition in the budding yeast cell cycle. Ravi J; Samart K; Zwolak J PLoS Comput Biol; 2024 Aug; 20(8):e1012048. PubMed ID: 39093881 [TBL] [Abstract][Full Text] [Related]
7. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Oehlen LJ; Cross FR Genes Dev; 1994 May; 8(9):1058-70. PubMed ID: 7926787 [TBL] [Abstract][Full Text] [Related]
8. Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast. Oehlen LJ; Jeoung DI; Cross FR Mol Gen Genet; 1998 May; 258(3):183-98. PubMed ID: 9645424 [TBL] [Abstract][Full Text] [Related]
9. Experimental testing of a new integrated model of the budding yeast Start transition. Adames NR; Schuck PL; Chen KC; Murali TM; Tyson JJ; Peccoud J Mol Biol Cell; 2015 Nov; 26(22):3966-84. PubMed ID: 26310445 [TBL] [Abstract][Full Text] [Related]
11. Two legs are better than one. Freire P; Zhang T Cell Cycle; 2011 Apr; 10(8):1189-90. PubMed ID: 21436620 [No Abstract] [Full Text] [Related]
12. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Bryan BA; McGrew E; Lu Y; Polymenis M Mol Genet Genomics; 2004 Feb; 271(1):72-81. PubMed ID: 14648201 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms creating bistable switches at cell cycle transitions. Verdugo A; Vinod PK; Tyson JJ; Novak B Open Biol; 2013 Mar; 3(3):120179. PubMed ID: 23486222 [TBL] [Abstract][Full Text] [Related]
14. Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Doncic A; Atay O; Valk E; Grande A; Bush A; Vasen G; Colman-Lerner A; Loog M; Skotheim JM Cell; 2015 Mar; 160(6):1182-95. PubMed ID: 25768911 [TBL] [Abstract][Full Text] [Related]
15. Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate. Palumbo P; Vanoni M; Cusimano V; Busti S; Marano F; Manes C; Alberghina L Nat Commun; 2016 Apr; 7():11372. PubMed ID: 27094800 [TBL] [Abstract][Full Text] [Related]
16. Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B-p34cdc2 kinase. Stern B; Nurse P EMBO J; 1997 Feb; 16(3):534-44. PubMed ID: 9034336 [TBL] [Abstract][Full Text] [Related]
17. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start. Yahya G; Parisi E; Flores A; Gallego C; Aldea M Mol Cell; 2014 Jan; 53(1):115-26. PubMed ID: 24374311 [TBL] [Abstract][Full Text] [Related]
18. The CLN gene family: central regulators of cell cycle Start in budding yeast. Levine K; Tinkelenberg AH; Cross F Prog Cell Cycle Res; 1995; 1():101-14. PubMed ID: 9552356 [TBL] [Abstract][Full Text] [Related]
19. Distinct interactions select and maintain a specific cell fate. Doncic A; Falleur-Fettig M; Skotheim JM Mol Cell; 2011 Aug; 43(4):528-39. PubMed ID: 21855793 [TBL] [Abstract][Full Text] [Related]