BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 22645714)

  • 1. Immunotherapy targets in pediatric cancer.
    Orentas RJ; Lee DW; Mackall C
    Front Oncol; 2012; 2():3. PubMed ID: 22645714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3.
    Li N; Spetz MR; Li D; Ho M
    Pharmacol Ther; 2021 Jul; 223():107892. PubMed ID: 33992682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives.
    Thomas R; Al-Khadairi G; Roelands J; Hendrickx W; Dermime S; Bedognetti D; Decock J
    Front Immunol; 2018; 9():947. PubMed ID: 29770138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric Antigen Receptor T Cell Based Immunotherapy for Cancer.
    Li F; Zhang T; Cao L; Zhang Y
    Curr Stem Cell Res Ther; 2018; 13(5):327-335. PubMed ID: 29676233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunotherapy of Childhood Sarcomas.
    Roberts SS; Chou AJ; Cheung NK
    Front Oncol; 2015; 5():181. PubMed ID: 26301204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy and safety of CD22 chimeric antigen receptor (CAR) T cell therapy in patients with B cell malignancies: a protocol for a systematic review and meta-analysis.
    Adeel K; Fergusson NJ; Shorr R; Atkins H; Hay KA
    Syst Rev; 2021 Jan; 10(1):35. PubMed ID: 33478595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies.
    Biagi E; Marin V; Giordano Attianese GM; Dander E; D'Amico G; Biondi A
    Haematologica; 2007 Mar; 92(3):381-8. PubMed ID: 17339188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune-based therapies for childhood cancer.
    Mackall CL; Merchant MS; Fry TJ
    Nat Rev Clin Oncol; 2014 Dec; 11(12):693-703. PubMed ID: 25348789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response.
    Robbins PF; Kassim SH; Tran TL; Crystal JS; Morgan RA; Feldman SA; Yang JC; Dudley ME; Wunderlich JR; Sherry RM; Kammula US; Hughes MS; Restifo NP; Raffeld M; Lee CC; Li YF; El-Gamil M; Rosenberg SA
    Clin Cancer Res; 2015 Mar; 21(5):1019-27. PubMed ID: 25538264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy.
    Raza A; Merhi M; Inchakalody VP; Krishnankutty R; Relecom A; Uddin S; Dermime S
    J Transl Med; 2020 Mar; 18(1):140. PubMed ID: 32220256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAGEA4 expression in bone and soft tissue tumors: its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1.
    Iura K; Kohashi K; Ishii T; Maekawa A; Bekki H; Otsuka H; Yamada Y; Yamamoto H; Matsumoto Y; Iwamoto Y; Oda Y
    Virchows Arch; 2017 Sep; 471(3):383-392. PubMed ID: 28744588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric antigen receptor therapy in hematological malignancies: antigenic targets and their clinical research progress.
    Zhao J; Wu M; Li Z; Su S; Wen Y; Zhang L; Li Y
    Ann Hematol; 2020 Aug; 99(8):1681-1699. PubMed ID: 32388608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma.
    Terry RL; Meyran D; Fleuren EDG; Mayoh C; Zhu J; Omer N; Ziegler DS; Haber M; Darcy PK; Trapani JA; Neeson PJ; Ekert PG
    Cancers (Basel); 2021 Sep; 13(18):. PubMed ID: 34572932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression.
    Poncette L; Chen X; Lorenz FK; Blankenstein T
    J Clin Invest; 2019 Jan; 129(1):324-335. PubMed ID: 30530988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NYESO-1/LAGE-1s and PRAME are targets for antigen specific T cells in chondrosarcoma following treatment with 5-Aza-2-deoxycitabine.
    Pollack SM; Li Y; Blaisdell MJ; Farrar EA; Chou J; Hoch BL; Loggers ET; Rodler E; Eary JF; Conrad EU; Jones RL; Yee C
    PLoS One; 2012; 7(2):e32165. PubMed ID: 22384167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers.
    Orentas RJ; Yang JJ; Wen X; Wei JS; Mackall CL; Khan J
    Front Oncol; 2012; 2():194. PubMed ID: 23251904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-cell target antigens across major gynecologic cancers.
    Rodriguez-Garcia A; Minutolo NG; Robinson JM; Powell DJ
    Gynecol Oncol; 2017 Jun; 145(3):426-435. PubMed ID: 28377094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies and vaccines--hope or illusion?
    Jäger D; Knuth A
    Breast; 2005 Dec; 14(6):631-5. PubMed ID: 16242931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T Cell Receptors for Gene Transfer in Adoptive T Cell Therapy.
    Sharma P; Kranz DM
    Crit Rev Immunol; 2019; 39(2):105-122. PubMed ID: 31679251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New developments in immunotherapy for pediatric solid tumors.
    Schultz LM; Majzner R; Davis KL; Mackall C
    Curr Opin Pediatr; 2018 Feb; 30(1):30-39. PubMed ID: 29189429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.