BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22645750)

  • 1. [Chemical approaches for trapping protein thiols and their oxidative modification].
    Huang CS; Zhu WP; Xu YF; Qian XH
    Yao Xue Xue Bao; 2012 Mar; 47(3):280-90. PubMed ID: 22645750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiolation and nitrosation of cysteines in biological fluids and cells.
    Di Simplicio P; Franconi F; Frosalí S; Di Giuseppe D
    Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.
    Devarie-Baez NO; Silva Lopez EI; Furdui CM
    Free Radic Res; 2016; 50(2):172-94. PubMed ID: 26340608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
    Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM
    Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of redox signaling involving chemical conjugation of protein thiols by nitric oxide and electrophiles.
    Sawa T; Arimoto H; Akaike T
    Bioconjug Chem; 2010 Jul; 21(7):1121-9. PubMed ID: 20225829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine.
    Wiesweg M; Berchner-Pfannschmidt U; Fandrey J; Petrat F; de Groot H; Kirsch M
    Free Radic Res; 2013 Feb; 47(2):104-15. PubMed ID: 23181469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the S-nitrosoproteome: tools and strategies.
    López-Sánchez LM; Muntané J; de la Mata M; Rodríguez-Ariza A
    Proteomics; 2009 Feb; 9(4):808-18. PubMed ID: 19160395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras.
    Kuster GM; Pimentel DR; Adachi T; Ido Y; Brenner DA; Cohen RA; Liao R; Siwik DA; Colucci WS
    Circulation; 2005 Mar; 111(9):1192-8. PubMed ID: 15723974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and cell signaling: modulation of redox tone and protein modification.
    Landar A; Darley-Usmar VM
    Amino Acids; 2003 Dec; 25(3-4):313-21. PubMed ID: 14661093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and functions of protein sulfenic acids.
    Poole LB
    Curr Protoc Toxicol; 2004 Feb; Chapter 17():Unit17.1. PubMed ID: 20963761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for determining the modification of protein thiols by reactive lipids.
    Oh J; Johnson MS; Landar A
    Methods Cell Biol; 2007; 80():417-34. PubMed ID: 17445707
    [No Abstract]   [Full Text] [Related]  

  • 17. Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat.
    Tyther R; Ahmeda A; Johns E; McDonagh B; Sheehan D
    J Proteome Res; 2010 May; 9(5):2678-87. PubMed ID: 20359167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-molecular-weight thiols in plants: functional and analytical implications.
    Pivato M; Fabrega-Prats M; Masi A
    Arch Biochem Biophys; 2014 Oct; 560():83-99. PubMed ID: 25057770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.