BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22646515)

  • 1. Multiple lessons from the multiple functions of a regulator of type III secretion system assembly in the plant pathogen Pseudomonas syringae.
    Wei HL; Collmer A
    Mol Microbiol; 2012 Jul; 85(2):195-200. PubMed ID: 22646515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells.
    Crabill E; Karpisek A; Alfano JR
    Mol Microbiol; 2012 Jul; 85(2):225-38. PubMed ID: 22607547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas syringae HrpJ is a type III secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 Harpin.
    Fu ZQ; Guo M; Alfano JR
    J Bacteriol; 2006 Sep; 188(17):6060-9. PubMed ID: 16923873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae.
    Waite C; Schumacher J; Jovanovic M; Bennett M; Buck M
    mBio; 2017 Jan; 8(1):. PubMed ID: 28119474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions.
    Cunnac S; Lindeberg M; Collmer A
    Curr Opin Microbiol; 2009 Feb; 12(1):53-60. PubMed ID: 19168384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. YopN Is Required for Efficient Effector Translocation and Virulence in Yersinia pseudotuberculosis.
    Bamyaci S; Ekestubbe S; Nordfelth R; Erttmann SF; Edgren T; Forsberg Å
    Infect Immun; 2018 Aug; 86(8):. PubMed ID: 29760214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathogenicity factor HrpF interacts with HrpA and HrpG to modulate type III secretion system (T3SS) function and t3ss expression in Pseudomonas syringae pv. averrhoi.
    Huang YC; Lin YC; Wei CF; Deng WL; Huang HC
    Mol Plant Pathol; 2016 Sep; 17(7):1080-94. PubMed ID: 26638129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection.
    Henry E; Toruño TY; Jauneau A; Deslandes L; Coaker G
    Plant Cell; 2017 Jul; 29(7):1555-1570. PubMed ID: 28600390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola.
    Ortiz-Martín I; Thwaites R; Macho AP; Mansfield JW; Beuzón CR
    Mol Plant Microbe Interact; 2010 May; 23(5):665-81. PubMed ID: 20367474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts.
    Morgan RL; Zhou H; Lehto E; Nguyen N; Bains A; Wang X; Ma W
    Mol Microbiol; 2010 Apr; 76(2):437-55. PubMed ID: 20233307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25.
    Vinatzer BA; Jelenska J; Greenberg JT
    Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal Monitoring of
    Park E; Lee HY; Woo J; Choi D; Dinesh-Kumar SP
    Plant Cell; 2017 Jul; 29(7):1571-1584. PubMed ID: 28619883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas syringae type III effector repertoires: last words in endless arguments.
    Lindeberg M; Cunnac S; Collmer A
    Trends Microbiol; 2012 Apr; 20(4):199-208. PubMed ID: 22341410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains.
    Lindeberg M; Cartinhour S; Myers CR; Schechter LM; Schneider DJ; Collmer A
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1151-8. PubMed ID: 17073298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlgW regulates multiple Pseudomonas syringae virulence strategies.
    Schreiber KJ; Desveaux D
    Mol Microbiol; 2011 Apr; 80(2):364-77. PubMed ID: 21306444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration of Type III Secretion System Transcriptional Regulators Links Gene Expression to Secretion.
    Charova SN; Gazi AD; Mylonas E; Pozidis C; Sabarit B; Anagnostou D; Psatha K; Aivaliotis M; Beuzon CR; Panopoulos NJ; Kokkinidis M
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas syringae Differentiates into Phenotypically Distinct Subpopulations During Colonization of a Plant Host.
    Rufián JS; Sánchez-Romero MA; López-Márquez D; Macho AP; Mansfield JW; Arnold DL; Ruiz-Albert J; Casadesús J; Beuzón CR
    Environ Microbiol; 2016 Oct; 18(10):3593-3605. PubMed ID: 27516206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of flagellin export through the type III secretion system of Pseudomonas syringae reveal a major difference in the innate immune systems of mammals and the model plant Nicotiana benthamiana.
    Wei HL; Chakravarthy S; Worley JN; Collmer A
    Cell Microbiol; 2013 Apr; 15(4):601-18. PubMed ID: 23107228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Bioinformatics and Molecular Biology to Streamline Construction of Effector Libraries for Phytopathogenic Pseudomonas syringae Strains.
    Jayaraman J; Halane MK; Choi S; McCann HC; Sohn KH
    Methods Mol Biol; 2019; 1991():1-12. PubMed ID: 31041757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.
    Xin XF; He SY
    Annu Rev Phytopathol; 2013; 51():473-98. PubMed ID: 23725467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.