These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 22647192)

  • 1. Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.
    Wise JG
    Biochemistry; 2012 Jun; 51(25):5125-41. PubMed ID: 22647192
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Futamata R; Ogasawara F; Ichikawa T; Kodan A; Kimura Y; Kioka N; Ueda K
    J Biol Chem; 2020 Apr; 295(15):5002-5011. PubMed ID: 32111736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1).
    Chufan EE; Kapoor K; Sim HM; Singh S; Talele TT; Durell SR; Ambudkar SV
    PLoS One; 2013; 8(12):e82463. PubMed ID: 24349290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies.
    Mora Lagares L; Minovski N; Caballero Alfonso AY; Benfenati E; Wellens S; Culot M; Gosselet F; Novič M
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric Role of Substrate Occupancy Toward the Alignment of P-glycoprotein Nucleotide Binding Domains.
    Pan L; Aller SG
    Sci Rep; 2018 Oct; 8(1):14643. PubMed ID: 30279588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-glycoprotein function involves conformational transitions detectable by differential immunoreactivity.
    Mechetner EB; Schott B; Morse BS; Stein WD; Druley T; Davis KA; Tsuruo T; Roninson IB
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12908-13. PubMed ID: 9371774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular models of human P-glycoprotein in two different catalytic states.
    Becker JP; Depret G; Van Bambeke F; Tulkens PM; Prévost M
    BMC Struct Biol; 2009 Jan; 9():3. PubMed ID: 19159494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle.
    Rosenberg MF; Velarde G; Ford RC; Martin C; Berridge G; Kerr ID; Callaghan R; Schmidlin A; Wooding C; Linton KJ; Higgins CF
    EMBO J; 2001 Oct; 20(20):5615-25. PubMed ID: 11598005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions and cooperativity between P-glycoprotein structural domains determined by thermal unfolding provides insights into its solution structure and function.
    Yang Z; Zhou Q; Mok L; Singh A; Swartz DJ; Urbatsch IL; Brouillette CG
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):48-60. PubMed ID: 27783926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric modulation bypasses the requirement for ATP hydrolysis in regenerating low affinity transition state conformation of human P-glycoprotein.
    Maki N; Moitra K; Ghosh P; Dey S
    J Biol Chem; 2006 Apr; 281(16):10769-77. PubMed ID: 16505485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites.
    Ohnuma S; Chufan E; Nandigama K; Jenkins LM; Durell SR; Appella E; Sauna ZE; Ambudkar SV
    Biochemistry; 2011 May; 50(18):3724-35. PubMed ID: 21452853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring movement and energy in human P-glycoprotein conformational rearrangement.
    Zhang Y; Gong W; Wang Y; Liu Y; Li C
    J Biomol Struct Dyn; 2019 Mar; 37(5):1104-1119. PubMed ID: 29620438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the distance between the homologous halves of P-glycoprotein that triggers the high/low ATPase activity switch.
    Loo TW; Clarke DM
    J Biol Chem; 2014 Mar; 289(12):8484-92. PubMed ID: 24523403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis.
    Zoghbi ME; Mok L; Swartz DJ; Singh A; Fendley GA; Urbatsch IL; Altenberg GA
    J Biol Chem; 2017 Dec; 292(50):20412-20424. PubMed ID: 29018094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1.
    Gutmann DA; Ward A; Urbatsch IL; Chang G; van Veen HW
    Trends Biochem Sci; 2010 Jan; 35(1):36-42. PubMed ID: 19819701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origin of large flexibility of P-glycoprotein in the inward-facing state.
    Wen PC; Verhalen B; Wilkens S; Mchaourab HS; Tajkhorshid E
    J Biol Chem; 2013 Jun; 288(26):19211-20. PubMed ID: 23658020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding.
    Xing J; Huang S; Heng Y; Mei H; Pan X
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33353070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1).
    Sharom FJ
    Biochem Cell Biol; 2006 Dec; 84(6):979-92. PubMed ID: 17215884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work.
    Sauna ZE; Ambudkar SV
    Mol Cancer Ther; 2007 Jan; 6(1):13-23. PubMed ID: 17237262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of multidrug transport by ABC transporters.
    Seeger MA; van Veen HW
    Biochim Biophys Acta; 2009 May; 1794(5):725-37. PubMed ID: 19135557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.