These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22647201)

  • 1. The quest for novel chemical matter and the contribution of computer-aided de novo design.
    Pirard B
    Expert Opin Drug Discov; 2011 Mar; 6(3):225-31. PubMed ID: 22647201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-based de novo design of drug-like molecules.
    Schneider G; Fechner U
    Nat Rev Drug Discov; 2005 Aug; 4(8):649-63. PubMed ID: 16056391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NovoFLAP: A ligand-based de novo design approach for the generation of medicinally relevant ideas.
    Damewood JR; Lerman CL; Masek BB
    J Chem Inf Model; 2010 Jul; 50(7):1296-303. PubMed ID: 20586434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo design: balancing novelty and confined chemical space.
    Kutchukian PS; Shakhnovich EI
    Expert Opin Drug Discov; 2010 Aug; 5(8):789-812. PubMed ID: 22827800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo drug design.
    Hartenfeller M; Schneider G
    Methods Mol Biol; 2011; 672():299-323. PubMed ID: 20838974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo drug design using multiobjective evolutionary graphs.
    Nicolaou CA; Apostolakis J; Pattichis CS
    J Chem Inf Model; 2009 Feb; 49(2):295-307. PubMed ID: 19434831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards structure-based protein drug design.
    Zhang C; Lai L
    Biochem Soc Trans; 2011 Oct; 39(5):1382-6, suppl 1 p following 1386. PubMed ID: 21936819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of ligand-based de novo design for scaffold hopping and sidechain optimization: two case studies.
    Feher M; Gao Y; Baber JC; Shirley WA; Saunders J
    Bioorg Med Chem; 2008 Jan; 16(1):422-7. PubMed ID: 17920281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux (1): a virtual synthesis scheme for fragment-based de novo design.
    Fechner U; Schneider G
    J Chem Inf Model; 2006; 46(2):699-707. PubMed ID: 16563000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in de novo design and scaffold hopping.
    Mauser H; Guba W
    Curr Opin Drug Discov Devel; 2008 May; 11(3):365-74. PubMed ID: 18428090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo design - hop(p)ing against hope.
    Schneider G
    Drug Discov Today Technol; 2013 Dec; 10(4):e453-60. PubMed ID: 24451634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic tailoring and transplanting: a practical method that makes virtual screening more useful.
    Li Y; Zhao Y; Liu Z; Wang R
    J Chem Inf Model; 2011 Jun; 51(6):1474-91. PubMed ID: 21520918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing synthetic accessibility of chemical compounds using machine learning methods.
    Podolyan Y; Walters MA; Karypis G
    J Chem Inf Model; 2010 Jun; 50(6):979-91. PubMed ID: 20536191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Automated Structure-Based De Novo Drug Design.
    Tang Y; Moretti R; Meiler J
    J Chem Inf Model; 2024 Mar; 64(6):1794-1805. PubMed ID: 38485516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo enzymes: from computational design to mRNA display.
    Golynskiy MV; Seelig B
    Trends Biotechnol; 2010 Jul; 28(7):340-5. PubMed ID: 20483496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.