BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22647966)

  • 1. Self-selected walking speed predicts ability to run following traumatic brain injury.
    Williams G; Schache AG; Morris ME
    J Head Trauma Rehabil; 2013; 28(5):379-85. PubMed ID: 22647966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility after traumatic brain injury: relationships with ankle joint power generation and motor skill level.
    Williams GP; Schache AG; Morris ME
    J Head Trauma Rehabil; 2013; 28(5):371-8. PubMed ID: 22613943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a conceptual framework for retraining high-level mobility following traumatic brain injury: two case reports.
    Williams GP; Schache AG
    J Head Trauma Rehabil; 2010; 25(3):164-72. PubMed ID: 20473090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. People preferentially increase hip joint power generation to walk faster following traumatic brain injury.
    Williams G; Morris ME; Schache A; McCrory PR
    Neurorehabil Neural Repair; 2010; 24(6):550-8. PubMed ID: 20086196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balance, attention, and dual-task performance during walking after brain injury: associations with falls history.
    McCulloch KL; Buxton E; Hackney J; Lowers S
    J Head Trauma Rehabil; 2010; 25(3):155-63. PubMed ID: 20473089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Running abnormalities after traumatic brain injury.
    Williams G; Schache A; Morris ME
    Brain Inj; 2013; 27(4):434-43. PubMed ID: 23473505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between step variability, muscle strength and functional walking performance in children with post-traumatic brain injury.
    Katz-Leurer M; Rotem H; Keren O; Meyer S
    Gait Posture; 2009 Jan; 29(1):154-7. PubMed ID: 18701292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships among measures of balance, gait, and community integration in people with brain injury.
    Perry SB; Woollard J; Little S; Shroyer K
    J Head Trauma Rehabil; 2014; 29(2):117-24. PubMed ID: 23474884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait speed in relation to categories of functional ambulation after spinal cord injury.
    van Hedel HJ;
    Neurorehabil Neural Repair; 2009 May; 23(4):343-50. PubMed ID: 19036717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of concurrent cognitive tasks on gait features among children post-severe traumatic brain injury and typically-developed controls.
    Katz-Leurer M; Rotem H; Keren O; Meyer S
    Brain Inj; 2011; 25(6):581-6. PubMed ID: 21534735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance and balance self-efficacy are associated with activity and participation after stroke: a cross-sectional study in people with chronic stroke.
    Schmid AA; Van Puymbroeck M; Altenburger PA; Dierks TA; Miller KK; Damush TM; Williams LS
    Arch Phys Med Rehabil; 2012 Jun; 93(6):1101-7. PubMed ID: 22502804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments.
    Williams G; Clark R; Schache A; Fini NA; Moore L; Morris ME; McCrory PR
    J Neurotrauma; 2011 Feb; 28(2):281-7. PubMed ID: 21174634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of stepping as indicators of mobility, balance, and fall risk in balance-impaired older adults.
    Cho BL; Scarpace D; Alexander NB
    J Am Geriatr Soc; 2004 Jul; 52(7):1168-73. PubMed ID: 15209657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of dynamic balance during gait training in people with acquired brain injury.
    Clark RA; Williams G; Fini N; Moore L; Bryant AL
    Arch Phys Med Rehabil; 2012 Apr; 93(4):636-40. PubMed ID: 22325681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical therapy for correcting postural and coordination deficits in patients with mild-to-moderate traumatic brain injury.
    Ustinova KI; Chernikova LA; Dull A; Perkins J
    Physiother Theory Pract; 2015 Jan; 31(1):1-7. PubMed ID: 25083579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle plantarflexor spasticity is not differentially disabling for those who are weak following traumatic brain injury.
    Williams G; Banky M; McKenzie D; Olver J
    Brain Inj; 2017; 31(2):193-198. PubMed ID: 27880057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of walking speed and distance in subjects with an incomplete spinal cord injury.
    van Hedel HJ; Dietz V; Curt A
    Neurorehabil Neural Repair; 2007; 21(4):295-301. PubMed ID: 17353459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-reported walking ability in persons with chronic stroke and the relationship with gait performance tests.
    BrogÄrdh C; Flansbjer UB; Lexell J
    PM R; 2012 Oct; 4(10):734-8. PubMed ID: 22766045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recreational physical activities among children with a history of severe traumatic brain injury.
    Katz-Leurer M; Rotem H; Keren O; Meyer S
    Brain Inj; 2010; 24(13-14):1561-7. PubMed ID: 20973625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between balance abilities and gait characteristics in children with post-traumatic brain injury.
    Katz-Leurer M; Rotem H; Lewitus H; Keren O; Meyer S
    Brain Inj; 2008 Feb; 22(2):153-9. PubMed ID: 18240044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.