These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Stereoscopic augmented reality for laparoscopic surgery. Kang X; Azizian M; Wilson E; Wu K; Martin AD; Kane TD; Peters CA; Cleary K; Shekhar R Surg Endosc; 2014 Jul; 28(7):2227-35. PubMed ID: 24488352 [TBL] [Abstract][Full Text] [Related]
3. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality. Chen L; Tang W; John NW; Wan TR; Zhang JJ Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779 [TBL] [Abstract][Full Text] [Related]
4. Augmented reality navigation for liver resection with a stereoscopic laparoscope. Luo H; Yin D; Zhang S; Xiao D; He B; Meng F; Zhang Y; Cai W; He S; Zhang W; Hu Q; Guo H; Liang S; Zhou S; Liu S; Sun L; Guo X; Fang C; Liu L; Jia F Comput Methods Programs Biomed; 2020 Apr; 187():105099. PubMed ID: 31601442 [TBL] [Abstract][Full Text] [Related]
5. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Su LM; Vagvolgyi BP; Agarwal R; Reiley CE; Taylor RH; Hager GD Urology; 2009 Apr; 73(4):896-900. PubMed ID: 19193404 [TBL] [Abstract][Full Text] [Related]
6. Stereo Dense Scene Reconstruction and Accurate Localization for Learning-Based Navigation of Laparoscope in Minimally Invasive Surgery. Wei R; Li B; Mo H; Lu B; Long Y; Yang B; Dou Q; Liu Y; Sun D IEEE Trans Biomed Eng; 2023 Feb; 70(2):488-500. PubMed ID: 35905063 [TBL] [Abstract][Full Text] [Related]
7. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console. Volonté F; Buchs NC; Pugin F; Spaltenstein J; Schiltz B; Jung M; Hagen M; Ratib O; Morel P Int J Med Robot; 2013 Sep; 9(3):e34-8. PubMed ID: 23239589 [TBL] [Abstract][Full Text] [Related]
8. Stereoscopic visualization of laparoscope image using depth information from 3D model. Kumar A; Wang YY; Wu CJ; Liu KC; Wu HS Comput Methods Programs Biomed; 2014 Mar; 113(3):862-8. PubMed ID: 24444752 [TBL] [Abstract][Full Text] [Related]
9. Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery. Penza V; Ortiz J; Mattos LS; Forgione A; De Momi E Int J Comput Assist Radiol Surg; 2016 Feb; 11(2):197-206. PubMed ID: 26410837 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Image Acquisition and Processing for Stereoscopic Diagnostic Systems with the Application of Graphical Processing Units. Perek P; Mielczarek A; Makowski D Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062431 [TBL] [Abstract][Full Text] [Related]
11. Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Shekhar R; Dandekar O; Bhat V; Philip M; Lei P; Godinez C; Sutton E; George I; Kavic S; Mezrich R; Park A Surg Endosc; 2010 Aug; 24(8):1976-85. PubMed ID: 20174949 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a novel navigation platform for laparoscopic liver surgery with organ deformation compensation using injected fiducials. Pelanis E; Teatini A; Eigl B; Regensburger A; Alzaga A; Kumar RP; Rudolph T; Aghayan DL; Riediger C; Kvarnström N; Elle OJ; Edwin B Med Image Anal; 2021 Apr; 69():101946. PubMed ID: 33454603 [TBL] [Abstract][Full Text] [Related]
13. Laparoscopic image analysis for robotic arm guidance. Gketsis ZE; Tzagkas D; Hatzilias PV; Zervakis ME Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():148-51. PubMed ID: 17945572 [TBL] [Abstract][Full Text] [Related]
14. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Rohl S; Bodenstedt S; Suwelack S; Dillmann R; Speidel S; Kenngott H; Muller-Stich BP Med Phys; 2012 Mar; 39(3):1632-45. PubMed ID: 22380395 [TBL] [Abstract][Full Text] [Related]
15. Initial trial of a stereoscopic, insertable, remotely controlled camera for minimal access surgery. Fowler DL; Hu T; Nadkarni T; Allen PK; Hogle NJ Surg Endosc; 2010 Jan; 24(1):9-15. PubMed ID: 19517180 [TBL] [Abstract][Full Text] [Related]
16. Comparative Study of 2D and 3D Optical Imaging Systems: Laparoendoscopic Single-Site Surgery in an Ex Vivo Model. Vilaça J; Pinto JP; Fernandes S; Costa P; Pinto JC; Leão P Surg Innov; 2017 Dec; 24(6):598-604. PubMed ID: 28871872 [TBL] [Abstract][Full Text] [Related]
17. 3-Dimensional (3D) laparoscopy improves operating time in small spaces without impact on hemodynamics and psychomental stress parameters of the surgeon. Feng X; Morandi A; Boehne M; Imvised T; Ure BM; Kuebler JF; Lacher M Surg Endosc; 2015 May; 29(5):1231-9. PubMed ID: 25673344 [TBL] [Abstract][Full Text] [Related]
18. Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery. Vemuri AS; Wu JC; Liu KC; Wu HS Surg Endosc; 2012 Dec; 26(12):3655-62. PubMed ID: 22736284 [TBL] [Abstract][Full Text] [Related]
19. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy. Chen F; Cui X; Han B; Liu J; Zhang X; Liao H Comput Methods Programs Biomed; 2021 Apr; 201():105952. PubMed ID: 33561710 [TBL] [Abstract][Full Text] [Related]
20. 3D straight-stick laparoscopy versus 3D robotics for task performance in novice surgeons: a randomised crossover trial. Shakir F; Jan H; Kent A Surg Endosc; 2016 Dec; 30(12):5380-5387. PubMed ID: 27059971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]