BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22648382)

  • 1. The conductive hearing loss due to an experimentally induced middle ear effusion alters the interaural level and time difference cues to sound location.
    Thornton JL; Chevallier KM; Koka K; Lupo JE; Tollin DJ
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):641-54. PubMed ID: 22648382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement.
    Thornton JL; Chevallier KM; Koka K; Gabbard SA; Tollin DJ
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):451-64. PubMed ID: 23615802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear.
    Eric Lupo J; Koka K; Thornton JL; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):30-41. PubMed ID: 21073935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of conductive hearing loss on temporal aspects of sound transmission through the ear.
    Hartley DE; Moore DR
    Hear Res; 2003 Mar; 177(1-2):53-60. PubMed ID: 12618317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera).
    Koka K; Jones HG; Thornton JL; Lupo JE; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):135-47. PubMed ID: 20971180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent development of the head and pinnae and the acoustical cues to sound location in a precocious species, the chinchilla (Chinchilla lanigera).
    Jones HG; Koka K; Thornton JL; Tollin DJ
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):127-40. PubMed ID: 20957506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change of middle ear transfer function in otitis media with effusion model of guinea pigs.
    Dai C; Gan RZ
    Hear Res; 2008 Sep; 243(1-2):78-86. PubMed ID: 18586077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear microphonic measurements of interaural time differences in the chick.
    Hyson RL; Overholt EM; Lippe WR
    Hear Res; 1994 Dec; 81(1-2):109-18. PubMed ID: 7737918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The acoustical cues to sound location in the guinea pig (Cavia porcellus).
    Greene NT; Anbuhl KL; Williams W; Tollin DJ
    Hear Res; 2014 Oct; 316():1-15. PubMed ID: 25051197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study.
    Alhussaini MA; Banakis Hartl RM; Benichoux V; Tollin DJ; Jenkins HA; Greene NT
    Otol Neurotol; 2018 Aug; 39(7):e585-e592. PubMed ID: 29912830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: improved directional hearing with a bone-conduction device.
    Agterberg MJ; Snik AF; Hol MK; Van Wanrooij MM; Van Opstal AJ
    Hear Res; 2012 Apr; 286(1-2):9-18. PubMed ID: 22616091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A primary study of bone conduction hearing loss in adults with otitis media with effusion].
    Dai Y; She W; Lu L; Chen J; Wang J; Ma X; Jiang P; Yang Y
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2010 Nov; 24(22):1023-6. PubMed ID: 21322927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of otitis media with effusion (OME) on central auditory function.
    Moore DR; Hartley DE; Hogan SC
    Int J Pediatr Otorhinolaryngol; 2003 Dec; 67 Suppl 1():S63-7. PubMed ID: 14662170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound frequency-invariant neural coding of a frequency-dependent cue to sound source location.
    Jones HG; Brown AD; Koka K; Thornton JL; Tollin DJ
    J Neurophysiol; 2015 Jul; 114(1):531-9. PubMed ID: 25972580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hearing loss induced by viscous fluids in the middle ear.
    Brown DT; Marsh RR; Potsic WP
    Int J Pediatr Otorhinolaryngol; 1983 Jan; 5(1):39-46. PubMed ID: 6188710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants.
    Salloum CA; Valero J; Wong DD; Papsin BC; van Hoesel R; Gordon KA
    Ear Hear; 2010 Aug; 31(4):441-56. PubMed ID: 20489647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early otitis media with effusion, hearing loss, and auditory processes at school age.
    Gravel JS; Roberts JE; Roush J; Grose J; Besing J; Burchinal M; Neebe E; Wallace IF; Zeisel S
    Ear Hear; 2006 Aug; 27(4):353-68. PubMed ID: 16825885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information conveyed by inferior colliculus neurons about stimuli with aligned and misaligned sound localization cues.
    Slee SJ; Young ED
    J Neurophysiol; 2011 Aug; 106(2):974-85. PubMed ID: 21653729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of hearing loss resulting from middle-ear fluid.
    Ravicz ME; Rosowski JJ; Merchant SN
    Hear Res; 2004 Sep; 195(1-2):103-30. PubMed ID: 15350284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.