BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22648409)

  • 21. Glycosylation Promotes the Random Coil to Helix Transition in a Region of a Protist Skp1 Associated with F-Box Binding.
    Xu X; Eletsky A; Sheikh MO; Prestegard JH; West CM
    Biochemistry; 2018 Feb; 57(5):511-515. PubMed ID: 29251491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Toxoplasma oxygen-sensing protein, TgPhyA, is required for resistance to interferon gamma-mediated nutritional immunity in mice.
    Cordonnier C; Mandalasi M; Gigley J; Wohlfert EA; West CM; Blader IJ
    PLoS Biol; 2024 Jun; 22(6):e3002690. PubMed ID: 38857298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of a cytoplasmic dual-function glycosyltransferase in O2 regulation of development in Dictyostelium.
    Wang ZA; van der Wel H; Vohra Y; Buskas T; Boons GJ; West CM
    J Biol Chem; 2009 Oct; 284(42):28896-904. PubMed ID: 19687007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specificity of a soluble UDP-galactose: fucoside alpha1,3-galactosyltransferase that modifies the cytoplasmic glycoprotein Skp1 in Dictyostelium.
    Ketcham C; Wang F; Fisher SZ; Ercan A; van der Wel H; Locke RD; Sirajud-Doulah K; Matta KL; West CM
    J Biol Chem; 2004 Jul; 279(28):29050-9. PubMed ID: 15123660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycosylation of Skp1 affects its conformation and promotes binding to a model f-box protein.
    Sheikh MO; Schafer CM; Powell JT; Rodgers KK; Mooers BH; West CM
    Biochemistry; 2014 Mar; 53(10):1657-69. PubMed ID: 24506136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary and functional implications of the complex glycosylation of Skp1, a cytoplasmic/nuclear glycoprotein associated with polyubiquitination.
    West CM
    Cell Mol Life Sci; 2003 Feb; 60(2):229-40. PubMed ID: 12678488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A
    Florimond C; Cordonnier C; Taujale R; van der Wel H; Kannan N; West CM; Blader IJ
    mBio; 2019 Mar; 10(2):. PubMed ID: 30914506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases.
    Koivunen P; Hirsilä M; Günzler V; Kivirikko KI; Myllyharju J
    J Biol Chem; 2004 Mar; 279(11):9899-904. PubMed ID: 14701857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases.
    Chowdhury R; McDonough MA; Mecinović J; Loenarz C; Flashman E; Hewitson KS; Domene C; Schofield CJ
    Structure; 2009 Jul; 17(7):981-9. PubMed ID: 19604478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins.
    West CM; van der Wel H; Gaucher EA
    Glycobiology; 2002 Feb; 12(2):17R-27R. PubMed ID: 11886837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes associated with post-translational modifications of Pro(143) in Skp1 of Dictyostelium--a dipeptide model system.
    Karunaratne CV; Weldeghiorghis TK; West CM; Taylor CM
    J Am Chem Soc; 2014 Oct; 136(43):15170-5. PubMed ID: 25250945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels.
    Masson N; Ratcliffe PJ
    J Cell Sci; 2003 Aug; 116(Pt 15):3041-9. PubMed ID: 12829734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prolyl hydroxylase half reaction: peptidyl prolyl-independent decarboxylation of alpha-ketoglutarate.
    Counts DF; Cardinale GJ; Udenfriend S
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2145-9. PubMed ID: 209453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleocytoplasmic O-glycosylation in protists.
    West CM; Kim HW
    Curr Opin Struct Biol; 2019 Jun; 56():204-212. PubMed ID: 31128470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prolyl 4-hydroxylases, master regulators of the hypoxia response.
    Myllyharju J
    Acta Physiol (Oxf); 2013 Jun; 208(2):148-65. PubMed ID: 23489300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3.
    Huang J; Zhao Q; Mooney SM; Lee FS
    J Biol Chem; 2002 Oct; 277(42):39792-800. PubMed ID: 12181324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prolyl 4-hydroxylase activity-responsive transcription factors: from hydroxylation to gene expression and neuroprotection.
    Siddiq A; Aminova LR; Ratan RR
    Front Biosci; 2008 Jan; 13():2875-87. PubMed ID: 17981760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.
    Kaelin WG; Ratcliffe PJ
    Mol Cell; 2008 May; 30(4):393-402. PubMed ID: 18498744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation.
    D'Angelo G; Duplan E; Boyer N; Vigne P; Frelin C
    J Biol Chem; 2003 Oct; 278(40):38183-7. PubMed ID: 12876291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proline hydroxylation and gene expression.
    Kaelin WG
    Annu Rev Biochem; 2005; 74():115-28. PubMed ID: 15952883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.