BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22648413)

  • 1. Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps.
    Cvetesic N; Perona JJ; Gruic-Sovulj I
    J Biol Chem; 2012 Jul; 287(30):25381-94. PubMed ID: 22648413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases.
    Dulic M; Cvetesic N; Perona JJ; Gruic-Sovulj I
    J Biol Chem; 2010 Jul; 285(31):23799-809. PubMed ID: 20498377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase.
    Chen X; Ma JJ; Tan M; Yao P; Hu QH; Eriani G; Wang ED
    Nucleic Acids Res; 2011 Jan; 39(1):235-47. PubMed ID: 20805241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
    Dulic M; Cvetesic N; Zivkovic I; Palencia A; Cusack S; Bertosa B; Gruic-Sovulj I
    J Mol Biol; 2018 Jan; 430(1):1-16. PubMed ID: 29111343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of tRNA(Leu) isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing.
    Du X; Wang ED
    Biochemistry; 2002 Aug; 41(34):10623-8. PubMed ID: 12186547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
    Boniecki MT; Vu MT; Betha AK; Martinis SA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19223-8. PubMed ID: 19020078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity.
    Betha AK; Williams AM; Martinis SA
    Biochemistry; 2007 May; 46(21):6258-67. PubMed ID: 17474713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
    Dulic M; Perona JJ; Gruic-Sovulj I
    Biochemistry; 2014 Oct; 53(39):6189-98. PubMed ID: 25207837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
    Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED
    J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo.
    Tang Y; Tirrell DA
    Biochemistry; 2002 Aug; 41(34):10635-45. PubMed ID: 12186549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.
    Rayevsky AV; Sharifi M; Tukalo MA
    J Mol Graph Model; 2017 Sep; 76():289-295. PubMed ID: 28743072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu.
    Mursinna RS; Lincecum TL; Martinis SA
    Biochemistry; 2001 May; 40(18):5376-81. PubMed ID: 11331000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity.
    Zhou XL; Fang ZP; Ruan ZR; Wang M; Liu RJ; Tan M; Anella FM; Wang ED
    Nucleic Acids Res; 2013 Nov; 41(21):9825-38. PubMed ID: 23969415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile).
    Fukunaga R; Yokoyama S
    Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase.
    Cvetesic N; Bilus M; Gruic-Sovulj I
    J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases.
    Nordin BE; Schimmel P
    Biochemistry; 2003 Nov; 42(44):12989-97. PubMed ID: 14596614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
    Chen JF; Guo NN; Li T; Wang ED; Wang YL
    Biochemistry; 2000 Jun; 39(22):6726-31. PubMed ID: 10828991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing.
    Zhou XL; Wang ED
    Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    Biochemistry; 2008 Apr; 47(16):4808-16. PubMed ID: 18363380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.