BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22648418)

  • 1. Conjugation of glutathione to oxidized tyrosine residues in peptides and proteins.
    Nagy P; Lechte TP; Das AB; Winterbourn CC
    J Biol Chem; 2012 Jul; 287(31):26068-76. PubMed ID: 22648418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.
    Das AB; Nauser T; Koppenol WH; Kettle AJ; Winterbourn CC; Nagy P
    Free Radic Biol Med; 2014 May; 70():86-95. PubMed ID: 24561577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues.
    Wright A; Bubb WA; Hawkins CL; Davies MJ
    Photochem Photobiol; 2002 Jul; 76(1):35-46. PubMed ID: 12126305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The myoglobin protein radical. Coupling of Tyr-103 to Tyr-151 in the H2O2-mediated cross-linking of sperm whale myoglobin.
    Tew D; Ortiz de Montellano PR
    J Biol Chem; 1988 Nov; 263(33):17880-6. PubMed ID: 3182873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.
    Nagy P; Kettle AJ; Winterbourn CC
    J Biol Chem; 2009 May; 284(22):14723-33. PubMed ID: 19297319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of α- and β- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-tryptophan formation.
    Fuentes-Lemus E; Silva E; Barrias P; Aspee A; Escobar E; Lorentzen LG; Carroll L; Leinisch F; Davies MJ; López-Alarcón C
    Free Radic Biol Med; 2018 Aug; 124():176-188. PubMed ID: 29885785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction.
    Gunther MR
    Free Radic Biol Med; 2004 Jun; 36(11):1345-54. PubMed ID: 15135170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoglobin-induced oxidative damage: evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants.
    Irwin JA; Ostdal H; Davies MJ
    Arch Biochem Biophys; 1999 Feb; 362(1):94-104. PubMed ID: 9917333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.
    Pichorner H; Metodiewa D; Winterbourn CC
    Arch Biochem Biophys; 1995 Nov; 323(2):429-37. PubMed ID: 7487108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H2O2.
    Wilks A; Ortiz de Montellano PR
    J Biol Chem; 1992 May; 267(13):8827-33. PubMed ID: 1315742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues.
    Leinisch F; Mariotti M; Rykaer M; Lopez-Alarcon C; Hägglund P; Davies MJ
    Free Radic Biol Med; 2017 Nov; 112():240-252. PubMed ID: 28756310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: an artificial enzyme with a peroxidase activity comparable to that of native peroxidases.
    Liu C; Yuan H; Liao F; Wei CW; Du KJ; Gao SQ; Tan X; Lin YW
    Chem Commun (Camb); 2019 Jun; 55(46):6610-6613. PubMed ID: 31119219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of cysteine residues with oxidized tyrosine residues mediates cross-linking of photo-oxidized casein proteins.
    Rossi C; Fuentes-Lemus E; Davies MJ
    Food Chem; 2022 Aug; 385():132667. PubMed ID: 35299016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.
    Winterbourn CC; Parsons-Mair HN; Gebicki S; Gebicki JM; Davies MJ
    Biochem J; 2004 Jul; 381(Pt 1):241-8. PubMed ID: 15025556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of a tyrosine O-sulfate residue by a cationic functional group: formation of a conjugate acid-base pair.
    Yagami T; Kitagawa K; Aida C; Fujiwara H; Futaki S
    J Pept Res; 2000 Oct; 56(4):239-49. PubMed ID: 11083063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction of superoxide with reduced glutathione.
    Winterbourn CC; Metodiewa D
    Arch Biochem Biophys; 1994 Nov; 314(2):284-90. PubMed ID: 7979367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of superoxide with the myoglobin tyrosyl radical.
    Das AB; Nagy P; Abbott HF; Winterbourn CC; Kettle AJ
    Free Radic Biol Med; 2010 Jun; 48(11):1540-7. PubMed ID: 20211247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal.
    Zhu X; Gallogly MM; Mieyal JJ; Anderson VE; Sayre LM
    Chem Res Toxicol; 2009 Jun; 22(6):1050-9. PubMed ID: 19480392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Convenient Oxidative Release of Thiol-Conjugated Forms of Microcystins for Chemical Analysis.
    Miles CO
    Chem Res Toxicol; 2017 Aug; 30(8):1599-1608. PubMed ID: 28595008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of superoxide anion with enzyme radicals: kinetics of reaction with lysozyme tryptophan radicals and corresponding effects on tyrosine electron transfer.
    Santus R; Patterson LK; Hug GL; Bazin M; Mazière JC; Morlière P
    Free Radic Res; 2000 Oct; 33(4):383-91. PubMed ID: 11022847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.