BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22648419)

  • 1. Functional partnership of the copper export machinery and glutathione balance in human cells.
    Hatori Y; Clasen S; Hasan NM; Barry AN; Lutsenko S
    J Biol Chem; 2012 Aug; 287(32):26678-87. PubMed ID: 22648419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An expanding range of functions for the copper chaperone/antioxidant protein Atox1.
    Hatori Y; Lutsenko S
    Antioxid Redox Signal; 2013 Sep; 19(9):945-57. PubMed ID: 23249252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione.
    Nardella MI; Rosato A; Belviso BD; Caliandro R; Natile G; Arnesano F
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I).
    Brose J; La Fontaine S; Wedd AG; Xiao Z
    Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminal metal-binding site 2 of the Wilson's Disease Protein plays a key role in the transfer of copper from Atox1.
    Walker JM; Huster D; Ralle M; Morgan CT; Blackburn NJ; Lutsenko S
    J Biol Chem; 2004 Apr; 279(15):15376-84. PubMed ID: 14754885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol-based copper handling by the copper chaperone Atox1.
    Hatori Y; Inouye S; Akagi R
    IUBMB Life; 2017 Apr; 69(4):246-254. PubMed ID: 28294521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved residues modulate copper release in human copper chaperone Atox1.
    Hussain F; Olson JS; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11158-63. PubMed ID: 18685091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein.
    Strausak D; Howie MK; Firth SD; Schlicksupp A; Pipkorn R; Multhaup G; Mercer JF
    J Biol Chem; 2003 Jun; 278(23):20821-7. PubMed ID: 12679332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional properties of the human copper-transporting ATPase ATP7B (the Wilson's disease protein) and regulation by metallochaperone Atox1.
    Lutsenko S; Tsivkovskii R; Walker JM
    Ann N Y Acad Sci; 2003 Apr; 986():204-11. PubMed ID: 12763797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro.
    Palm ME; Weise CF; Lundin C; Wingsle G; Nygren Y; Björn E; Naredi P; Wolf-Watz M; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6951-6. PubMed ID: 21482801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity.
    Walker JM; Tsivkovskii R; Lutsenko S
    J Biol Chem; 2002 Aug; 277(31):27953-9. PubMed ID: 12029094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function.
    Chen GF; Sudhahar V; Youn SW; Das A; Cho J; Kamiya T; Urao N; McKinney RD; Surenkhuu B; Hamakubo T; Iwanari H; Li S; Christman JW; Shantikumar S; Angelini GD; Emanueli C; Ushio-Fukai M; Fukai T
    Sci Rep; 2015 Oct; 5():14780. PubMed ID: 26437801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase.
    Hamza I; Prohaska J; Gitlin JD
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1215-20. PubMed ID: 12538877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.
    Hatori Y; Yan Y; Schmidt K; Furukawa E; Hasan NM; Yang N; Liu CN; Sockanathan S; Lutsenko S
    Nat Commun; 2016 Feb; 7():10640. PubMed ID: 26879543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu(I) binding and transfer by the N terminus of the Wilson disease protein.
    Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2007 Mar; 282(12):8622-31. PubMed ID: 17229731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATOX1: a novel copper-responsive transcription factor in mammals?
    Muller PA; Klomp LW
    Int J Biochem Cell Biol; 2009 Jun; 41(6):1233-6. PubMed ID: 18761103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.
    Niemiec MS; Weise CF; Wittung-Stafshede P
    PLoS One; 2012; 7(5):e36102. PubMed ID: 22574136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper transporting P-type ATPases and human disease.
    Cox DW; Moore SD
    J Bioenerg Biomembr; 2002 Oct; 34(5):333-8. PubMed ID: 12539960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of copper(I) by the Wilson disease protein and its copper chaperone.
    Wernimont AK; Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2004 Mar; 279(13):12269-76. PubMed ID: 14709553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of Copper and Cisplatin to Atox1 Is Mediated by Glutathione through the Formation of Metal-Sulfur Clusters.
    Dolgova NV; Yu C; Cvitkovic JP; Hodak M; Nienaber KH; Summers KL; Cotelesage JJH; Bernholc J; Kaminski GA; Pickering IJ; George GN; Dmitriev OY
    Biochemistry; 2017 Jun; 56(24):3129-3141. PubMed ID: 28549213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.