BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22648534)

  • 41. Protein-DNA interactions: a novel approach to improve the fluorescence stability of DNA/Ag nanoclusters.
    Zhou Z; Dong S
    Nanoscale; 2015 Jan; 7(4):1296-300. PubMed ID: 25502467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA-mediated silver nanoclusters: synthesis, properties and applications.
    Latorre A; Somoza Á
    Chembiochem; 2012 May; 13(7):951-8. PubMed ID: 22508551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity.
    Díez I; Eronen P; Österberg M; Linder MB; Ikkala O; Ras RH
    Macromol Biosci; 2011 Sep; 11(9):1185-91. PubMed ID: 21728237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Label-Free microRNA-155 Detection on the Basis of Fluorescent Silver Nanoclusters.
    Hosseini M; Akbari A; Ganjali MR; Dadmehr M; Rezayan AH
    J Fluoresc; 2015 Jul; 25(4):925-9. PubMed ID: 25953605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals.
    Zhang L; Liang RP; Xiao SJ; Bai JM; Zheng LL; Zhan L; Zhao XJ; Qiu JD; Huang CZ
    Talanta; 2014 Jan; 118():339-47. PubMed ID: 24274306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular sensitivity of DNA-Ag-PATP hybrid on optical activity for ultratrace mercury analysis.
    Liu H; Yang L; Ma H; Qi Z; Liu J
    Chem Commun (Camb); 2011 Sep; 47(33):9360-2. PubMed ID: 21766131
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new label-free and turn-on strategy for endonuclease detection using a DNA-silver nanocluster probe.
    Tian X; Kong XJ; Zhu ZM; Chen TT; Chu X
    Talanta; 2015 Jan; 131():116-20. PubMed ID: 25281081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multifunctional Dumbbell-Shaped DNA-Templated Selective Formation of Fluorescent Silver Nanoclusters or Copper Nanoparticles for Sensitive Detection of Biomolecules.
    Chen J; Ji X; Tinnefeld P; He Z
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1786-94. PubMed ID: 26719979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA-templated Ag nanoclusters as signal transducers for a label-free and resettable keypad lock.
    Zhou Z; Liu Y; Dong S
    Chem Commun (Camb); 2013 Apr; 49(30):3107-9. PubMed ID: 23471116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation and Structure of Fluorescent Silver Nanoclusters at Interfacial Binding Sites Facilitating Oligomerization of DNA Hairpins.
    Geczy R; Christensen NJ; Rasmussen KK; Kálomista I; Tiwari MK; Shah P; Yang SW; Bjerrum MJ; Thulstrup PW
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16091-16097. PubMed ID: 32516466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA-Templated Fluorescent Silver Nanoclusters Inhibit Bacterial Growth While Being Non-Toxic to Mammalian Cells.
    Rolband L; Yourston L; Chandler M; Beasock D; Danai L; Kozlov S; Marshall N; Shevchenko O; Krasnoslobodtsev AV; Afonin KA
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The detection of a mismatched DNA by using hairpin DNA-templated silver nanoclusters.
    Kim S; Gang J
    Anal Biochem; 2018 May; 549():171-173. PubMed ID: 29608881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Short-peptide-based hydrogel: a template for the in situ synthesis of fluorescent silver nanoclusters by using sunlight.
    Adhikari B; Banerjee A
    Chemistry; 2010 Dec; 16(46):13698-705. PubMed ID: 20945315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA-templated silver nanoclusters for fluorescence turn-on assay of acetylcholinesterase activity.
    Zhang Y; Cai Y; Qi Z; Lu L; Qian Y
    Anal Chem; 2013 Sep; 85(17):8455-61. PubMed ID: 23919577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pre-Incubation of Auric Acid with DNA Is Unnecessary for the Formation of DNA-Templated Gold Nanoclusters.
    Chen Y; Tao G; Lin R; Pei X; Liu F; Li N
    Chem Asian J; 2016 Jun; 11(11):1677-81. PubMed ID: 27060903
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.
    Ahn JK; Kim HY; Baek S; Park HG
    Biosens Bioelectron; 2017 Jul; 93():330-334. PubMed ID: 27623281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application.
    Shang L; Wang Y; Huang L; Dong S
    Langmuir; 2007 Jul; 23(14):7738-44. PubMed ID: 17552547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target-induced quenching for highly sensitive detection of nucleic acids based on label-free luminescent supersandwich DNA/silver nanoclusters.
    Wang G; Zhu Y; Chen L; Wang L; Zhang X
    Analyst; 2014 Jan; 139(1):165-9. PubMed ID: 24244937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A highly charged Ag(6)(4+) core in a DNA-encapsulated silver nanocluster.
    Koszinowski K; Ballweg K
    Chemistry; 2010 Mar; 16(11):3285-90. PubMed ID: 20169599
    [No Abstract]   [Full Text] [Related]  

  • 60. Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline.
    Park KS; Oh SS; Soh HT; Park HG
    Nanoscale; 2014 Sep; 6(17):9977-82. PubMed ID: 24901073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.