These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 22648712)
1. Rapid alternative absorption of dietary long-chain fatty acids with upregulation of intestinal glycosylated CD36 in liver cirrhosis. Yamamoto Y; Hiasa Y; Murakami H; Ikeda Y; Yamanishi H; Abe M; Matsuura B; Onji M Am J Clin Nutr; 2012 Jul; 96(1):90-101. PubMed ID: 22648712 [TBL] [Abstract][Full Text] [Related]
2. Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH). Utsunomiya H; Yamamoto Y; Takeshita E; Tokumoto Y; Tada F; Miyake T; Hirooka M; Abe M; Kumagi T; Matsuura B; Ikeda Y; Hiasa Y J Gastroenterol; 2017 Aug; 52(8):940-954. PubMed ID: 28062946 [TBL] [Abstract][Full Text] [Related]
3. Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Krishnan G; Bagath M; Devaraj C; Soren NM; Veeranna RK Res Vet Sci; 2022 Dec; 150():89-97. PubMed ID: 35809418 [TBL] [Abstract][Full Text] [Related]
4. Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Liu J; Yang P; Zuo G; He S; Tan W; Zhang X; Su C; Zhao L; Wei L; Chen Y; Ruan X; Chen Y Lipids Health Dis; 2018 Jul; 17(1):153. PubMed ID: 30016988 [TBL] [Abstract][Full Text] [Related]
5. Absorption and transport of dietary long-chain fatty acids in cirrhosis: a stable-isotope-tracing study. Cabré E; Hernández-Pérez JM; Fluvià L; Pastor C; Corominas A; Gassull MA Am J Clin Nutr; 2005 Mar; 81(3):692-701. PubMed ID: 15755841 [TBL] [Abstract][Full Text] [Related]
6. AMPK facilitates intestinal long-chain fatty acid uptake by manipulating CD36 expression and translocation. Wu W; Wang S; Liu Q; Shan T; Wang X; Feng J; Wang Y FASEB J; 2020 Apr; 34(4):4852-4869. PubMed ID: 32048347 [TBL] [Abstract][Full Text] [Related]
7. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Chen M; Yang Y; Braunstein E; Georgeson KE; Harmon CM Am J Physiol Endocrinol Metab; 2001 Nov; 281(5):E916-23. PubMed ID: 11595646 [TBL] [Abstract][Full Text] [Related]
8. The mechanism of increased intestinal palmitic acid absorption and its impact on hepatic stellate cell activation in nonalcoholic steatohepatitis. Hanayama M; Yamamoto Y; Utsunomiya H; Yoshida O; Liu S; Mogi M; Matsuura B; Takeshita E; Ikeda Y; Hiasa Y Sci Rep; 2021 Jun; 11(1):13380. PubMed ID: 34183709 [TBL] [Abstract][Full Text] [Related]
9. Effect of a high fat diet on lipid absorption and fatty acid transport in a rat model of short bowel syndrome. Sukhotnik I; Gork AS; Chen M; Drongowski RA; Coran AG; Harmon CM Pediatr Surg Int; 2003 Jul; 19(5):385-90. PubMed ID: 12721710 [TBL] [Abstract][Full Text] [Related]
12. Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Lynes M; Narisawa S; Millán JL; Widmaier EP Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1738-47. PubMed ID: 21900644 [TBL] [Abstract][Full Text] [Related]
13. Absorption and metabolism of octanoate by the rat colon in vivo: concentration dependency and influence of alternative fuels. Jørgensen JR; Fitch MD; Mortensen PB; Fleming SE Gut; 2002 Jul; 51(1):76-81. PubMed ID: 12077096 [TBL] [Abstract][Full Text] [Related]
14. SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. Jay AG; Simard JR; Huang N; Hamilton JA J Lipid Res; 2020 May; 61(5):790-807. PubMed ID: 32102800 [TBL] [Abstract][Full Text] [Related]
15. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Gunnarsdottir SA; Sadik R; Shev S; Simrén M; Sjövall H; Stotzer PO; Abrahamsson H; Olsson R; Björnsson ES Am J Gastroenterol; 2003 Jun; 98(6):1362-70. PubMed ID: 12818282 [TBL] [Abstract][Full Text] [Related]
16. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. Tanaka T; Nakata T; Oka T; Ogawa T; Okamoto F; Kusaka Y; Sohmiya K; Shimamoto K; Itakura K J Lipid Res; 2001 May; 42(5):751-9. PubMed ID: 11352982 [TBL] [Abstract][Full Text] [Related]
17. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation. Bezaire V; Bruce CR; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E509-15. PubMed ID: 16219667 [TBL] [Abstract][Full Text] [Related]
18. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. Holloway GP; Lally J; Nickerson JG; Alkhateeb H; Snook LA; Heigenhauser GJ; Calles-Escandon J; Glatz JF; Luiken JJ; Spriet LL; Bonen A J Physiol; 2007 Jul; 582(Pt 1):393-405. PubMed ID: 17478525 [TBL] [Abstract][Full Text] [Related]
19. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. Campbell SE; Tandon NN; Woldegiorgis G; Luiken JJ; Glatz JF; Bonen A J Biol Chem; 2004 Aug; 279(35):36235-41. PubMed ID: 15161924 [TBL] [Abstract][Full Text] [Related]
20. Differential regulation of cardiac glucose and fatty acid uptake by endosomal pH and actin filaments. Steinbusch LK; Wijnen W; Schwenk RW; Coumans WA; Hoebers NT; Ouwens DM; Coumans WA; Hoebers NT; Diamant M; Bonen A; Glatz JF; Luiken JJ Am J Physiol Cell Physiol; 2010 Jun; 298(6):C1549-59. PubMed ID: 20375272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]