These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22649043)

  • 1. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity.
    Lévy M; Wilhelm C; Devaud M; Levitz P; Gazeau F
    Contrast Media Mol Imaging; 2012; 7(4):373-83. PubMed ID: 22649043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles.
    Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S
    Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural, static and dynamic magnetic properties of dextran coated γ-Fe(2)O(3) nanoparticles studied by (57)Fe NMR, Mössbauer, TEM and magnetization measurements.
    Fardis M; Douvalis AP; Tsitrouli D; Rabias I; Stamopoulos D; Kehagias T; Karakosta E; Diamantopoulos G; Bakas T; Papavassiliou G
    J Phys Condens Matter; 2012 Apr; 24(15):156001. PubMed ID: 22418594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties.
    Kostopoulou A; Velu SK; Thangavel K; Orsini F; Brintakis K; Psycharakis S; Ranella A; Bordonali L; Lappas A; Lascialfari A
    Dalton Trans; 2014 Jun; 43(22):8395-404. PubMed ID: 24740193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.
    Babic M; Horák D; Trchová M; Jendelová P; Glogarová K; Lesný P; Herynek V; Hájek M; Syková E
    Bioconjug Chem; 2008 Mar; 19(3):740-50. PubMed ID: 18288791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.
    de Montferrand C; Lalatonne Y; Bonnin D; Lièvre N; Lecouvey M; Monod P; Russier V; Motte L
    Small; 2012 Jun; 8(12):1945-56. PubMed ID: 22488765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of medium viscosity and intracellular environment on the magnetization of superparamagnetic nanoparticles in silk fibroin solutions and 3T3 mouse fibroblast cell cultures.
    Urbano-Bojorge AL; Casanova-Carvajal O; Félix-González N; Fernández L; Madurga R; Sánchez-Cabezas S; Aznar E; Ramos M; Serrano-Olmedo JJ
    Nanotechnology; 2018 Sep; 29(38):385705. PubMed ID: 29947336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells.
    Villanueva A; Cañete M; Roca AG; Calero M; Veintemillas-Verdaguer S; Serna CJ; Morales Mdel P; Miranda R
    Nanotechnology; 2009 Mar; 20(11):115103. PubMed ID: 19420433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of interaction of magnetic nanoparticles with breast cancer cells.
    Calero M; Chiappi M; Lazaro-Carrillo A; Rodríguez MJ; Chichón FJ; Crosbie-Staunton K; Prina-Mello A; Volkov Y; Villanueva A; Carrascosa JL
    J Nanobiotechnology; 2015 Feb; 13():16. PubMed ID: 25880445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.
    Lartigue L; Hugounenq P; Alloyeau D; Clarke SP; Lévy M; Bacri JC; Bazzi R; Brougham DF; Wilhelm C; Gazeau F
    ACS Nano; 2012 Dec; 6(12):10935-49. PubMed ID: 23167525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy.
    Klein S; Sommer A; Distel LV; Hazemann JL; Kröner W; Neuhuber W; Müller P; Proux O; Kryschi C
    J Phys Chem B; 2014 Jun; 118(23):6159-66. PubMed ID: 24827589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis.
    Saraswathy A; Nazeer SS; Jeevan M; Nimi N; Arumugam S; Harikrishnan VS; Varma PR; Jayasree RS
    Colloids Surf B Biointerfaces; 2014 May; 117():216-24. PubMed ID: 24646453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia.
    Menelaou M; Georgoula K; Simeonidis K; Dendrinou-Samara C
    Dalton Trans; 2014 Mar; 43(9):3626-36. PubMed ID: 24413465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behaviour of adipose-derived canine mesenchymal stem cells after superparamagnetic iron oxide nanoparticles labelling for magnetic resonance imaging.
    Kolecka MA; Arnhold S; Schmidt M; Reich C; Kramer M; Failing K; von Pückler K
    BMC Vet Res; 2017 Feb; 13(1):62. PubMed ID: 28235414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition.
    Belaïd S; Laurent S; Vermeech M; Vander Elst L; Perez-Morga D; Muller RN
    Nanotechnology; 2013 Feb; 24(5):055705. PubMed ID: 23306107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties.
    Lévy M; Lagarde F; Maraloiu VA; Blanchin MG; Gendron F; Wilhelm C; Gazeau F
    Nanotechnology; 2010 Oct; 21(39):395103. PubMed ID: 20820094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and optimization of lipid-modified poly(amidoamine) dendrimer coated iron oxide nanoparticles as probes for biomedical applications.
    Boni A; Bardi G; Bertero A; Cappello V; Emdin M; Flori A; Gemmi M; Innocenti C; Menichetti L; Sangregorio C; Villa S; Piazza V
    Nanoscale; 2015 Apr; 7(16):7307-17. PubMed ID: 25815711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term in vivo biotransformation of iron oxide nanoparticles.
    Levy M; Luciani N; Alloyeau D; Elgrabli D; Deveaux V; Pechoux C; Chat S; Wang G; Vats N; Gendron F; Factor C; Lotersztajn S; Luciani A; Wilhelm C; Gazeau F
    Biomaterials; 2011 Jun; 32(16):3988-99. PubMed ID: 21392823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles.
    Safi M; Courtois J; Seigneuret M; Conjeaud H; Berret JF
    Biomaterials; 2011 Dec; 32(35):9353-63. PubMed ID: 21911254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.