These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 22649189)
1. Matrix modulation of the bioactivation of estragole by constituents of different alkenylbenzene-containing herbs and spices and physiologically based biokinetic modeling of possible in vivo effects. Alhusainy W; van den Berg SJ; Paini A; Campana A; Asselman M; Spenkelink A; Punt A; Scholz G; Schilter B; Adams TB; van Bladeren PJ; Rietjens IM Toxicol Sci; 2012 Sep; 129(1):174-87. PubMed ID: 22649189 [TBL] [Abstract][Full Text] [Related]
2. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806 [TBL] [Abstract][Full Text] [Related]
3. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034 [TBL] [Abstract][Full Text] [Related]
4. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat. Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307 [TBL] [Abstract][Full Text] [Related]
5. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats. Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879 [TBL] [Abstract][Full Text] [Related]
6. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes. Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling. Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071 [TBL] [Abstract][Full Text] [Related]
8. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats. Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753 [TBL] [Abstract][Full Text] [Related]
9. In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: implications for risk assessment. Rietjens IM; Punt A; Schilter B; Scholz G; Delatour T; van Bladeren PJ Mol Nutr Food Res; 2010 Feb; 54(2):195-207. PubMed ID: 19943261 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling. Al-Subeihi AA; Alhusainy W; Paini A; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Food Chem Toxicol; 2013 Sep; 59():564-71. PubMed ID: 23831728 [TBL] [Abstract][Full Text] [Related]
11. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling. Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling. Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143 [TBL] [Abstract][Full Text] [Related]
13. Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats. Martati E; Boersma MG; Spenkelink A; Khadka DB; van Bladeren PJ; Rietjens IM; Punt A Toxicol Sci; 2012 Aug; 128(2):301-16. PubMed ID: 22588462 [TBL] [Abstract][Full Text] [Related]
14. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes. Jeurissen SM; Punt A; Boersma MG; Bogaards JJ; Fiamegos YC; Schilter B; van Bladeren PJ; Cnubben NH; Rietjens IM Chem Res Toxicol; 2007 May; 20(5):798-806. PubMed ID: 17407329 [TBL] [Abstract][Full Text] [Related]
15. Glucuronidation of 1'-hydroxyestragole (1'-HE) by human UDP-glucuronosyltransferases UGT2B7 and UGT1A9. Iyer LV; Ho MN; Shinn WM; Bradford WW; Tanga MJ; Nath SS; Green CE Toxicol Sci; 2003 May; 73(1):36-43. PubMed ID: 12657745 [TBL] [Abstract][Full Text] [Related]
16. Study on inter-ethnic human differences in bioactivation and detoxification of estragole using physiologically based kinetic modeling. Ning J; Louisse J; Spenkelink B; Wesseling S; Rietjens IMCM Arch Toxicol; 2017 Sep; 91(9):3093-3108. PubMed ID: 28357488 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Miller EC; Swanson AB; Phillips DH; Fletcher TL; Liem A; Miller JA Cancer Res; 1983 Mar; 43(3):1124-34. PubMed ID: 6825084 [TBL] [Abstract][Full Text] [Related]
18. Matrix-derived combination effect and risk assessment for estragole from basil-containing plant food supplements (PFS). van den Berg SJ; Klaus V; Alhusainy W; Rietjens IM Food Chem Toxicol; 2013 Dec; 62():32-40. PubMed ID: 23959103 [TBL] [Abstract][Full Text] [Related]
19. Physiologically based biokinetic model of bioactivation and detoxification of the alkenylbenzene methyleugenol in rat. Al-Subeihi AA; Spenkelink B; Rachmawati N; Boersma MG; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Toxicol In Vitro; 2011 Feb; 25(1):267-85. PubMed ID: 20828604 [TBL] [Abstract][Full Text] [Related]
20. Basil extract inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1'-hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells. Jeurissen SM; Punt A; Delatour T; Rietjens IM Food Chem Toxicol; 2008 Jun; 46(6):2296-302. PubMed ID: 18433972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]