BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22649208)

  • 1. The passive stiffness of the wrist and forearm.
    Formica D; Charles SK; Zollo L; Guglielmelli E; Hogan N; Krebs HI
    J Neurophysiol; 2012 Aug; 108(4):1158-66. PubMed ID: 22649208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive stiffness of coupled wrist and forearm rotations.
    Drake WB; Charles SK
    Ann Biomed Eng; 2014 Sep; 42(9):1853-66. PubMed ID: 24912766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of redundant pointing movements involving the wrist and forearm.
    Dorman GR; Davis KC; Peaden AW; Charles SK
    J Neurophysiol; 2018 Oct; 120(4):2138-2154. PubMed ID: 29947599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement preferences of the wrist and forearm during activities of daily living.
    Anderton W; Tew S; Ferguson S; Hernandez J; Charles SK
    J Hand Ther; 2023; 36(3):580-592. PubMed ID: 36127238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carpal and forearm kinematics during a simulated hammering task.
    Leventhal EL; Moore DC; Akelman E; Wolfe SW; Crisco JJ
    J Hand Surg Am; 2010 Jul; 35(7):1097-104. PubMed ID: 20610055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A musculoskeletal model to estimate the relative changes in wrist strength due to interacting wrist and forearm postures.
    La Delfa NJ; Potvin JR
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1403-1411. PubMed ID: 28836461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical axes of the wrist are oriented obliquely to the anatomical axes.
    Crisco JJ; Heard WM; Rich RR; Paller DJ; Wolfe SW
    J Bone Joint Surg Am; 2011 Jan; 93(2):169-77. PubMed ID: 21248214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of planar constraint on the definition of the wrist axes of rotation.
    Akinnola OO; Vardakastani V; Kedgley AE
    J Biomech; 2020 Dec; 113():110083. PubMed ID: 33152636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffness, not inertial coupling, determines path curvature of wrist motions.
    Charles SK; Hogan N
    J Neurophysiol; 2012 Feb; 107(4):1230-40. PubMed ID: 22131378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated radioscapholunate fusion alters carpal kinematics while preserving dart-thrower's motion.
    Calfee RP; Leventhal EL; Wilkerson J; Moore DC; Akelman E; Crisco JJ
    J Hand Surg Am; 2008 Apr; 33(4):503-10. PubMed ID: 18406953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position-dependent characterization of passive wrist stiffness.
    Pando AL; Lee H; Drake WB; Hogan N; Charles SK
    IEEE Trans Biomed Eng; 2014 Aug; 61(8):2235-44. PubMed ID: 24686225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion analysis of the wrist joints in patients with rheumatoid arthritis.
    Yayama T; Kobayashi S; Kokubo Y; Inukai T; Mizukami Y; Kubota M; Ishikawa J; Baba H; Minami A
    Mod Rheumatol; 2007; 17(4):322-6. PubMed ID: 17694267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geometric framework for the estimation of joint stiffness of the human wrist.
    Formica D; Azhar M; Tommasino P; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():151-156. PubMed ID: 31374622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlimb differences in coordination of rapid wrist/forearm movements.
    Srinivasan GA; Embar T; Sainburg R
    Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the Rotation Axes of the Scapholunate Joint During Flexion-Extension and Radial-Ulnar Deviation Motions.
    Best GM; Mack ZE; Pichora DR; Crisco JJ; Kamal RN; Rainbow MJ
    J Hand Surg Am; 2019 Sep; 44(9):772-778. PubMed ID: 31300230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.