BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 22649227)

  • 1. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish.
    Goldshmit Y; Sztal TE; Jusuf PR; Hall TE; Nguyen-Chi M; Currie PD
    J Neurosci; 2012 May; 32(22):7477-92. PubMed ID: 22649227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish.
    Reimer MM; Kuscha V; Wyatt C; Sörensen I; Frank RE; Knüwer M; Becker T; Becker CG
    J Neurosci; 2009 Dec; 29(48):15073-82. PubMed ID: 19955358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury.
    Ishii K; Nakamura M; Dai H; Finn TP; Okano H; Toyama Y; Bregman BS
    J Neurosci Res; 2006 Dec; 84(8):1669-81. PubMed ID: 17044031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish.
    Goldshmit Y; Tang JKKY; Siegel AL; Nguyen PD; Kaslin J; Currie PD; Jusuf PR
    Neural Dev; 2018 Nov; 13(1):24. PubMed ID: 30447699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perineurial glia require Notch signaling during motor nerve development but not regeneration.
    Binari LA; Lewis GM; Kucenas S
    J Neurosci; 2013 Mar; 33(10):4241-52. PubMed ID: 23467342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor neuron regeneration in adult zebrafish.
    Reimer MM; Sörensen I; Kuscha V; Frank RE; Liu C; Becker CG; Becker T
    J Neurosci; 2008 Aug; 28(34):8510-6. PubMed ID: 18716209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras-Raf-ERK-Sp1 signaling axis in C6 glioma cells.
    Chang KW; Huang YL; Wong ZR; Su PH; Huang BM; Ju TK; Yang HY
    Biochem Biophys Res Commun; 2013 May; 434(4):854-60. PubMed ID: 23611784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury.
    Hasegawa K; Chang YW; Li H; Berlin Y; Ikeda O; Kane-Goldsmith N; Grumet M
    Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina.
    Meyers JR; Hu L; Moses A; Kaboli K; Papandrea A; Raymond PA
    Neural Dev; 2012 Aug; 7():30. PubMed ID: 22920725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes.
    Kleene R; Loers G; Jakovcevski I; Mishra B; Schachner M
    Restor Neurol Neurosci; 2019; 37(4):291-313. PubMed ID: 31227672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous transplantation of neural stem cells to the injured spinal cord of mice.
    Pallini R; Vitiani LR; Bez A; Casalbore P; Facchiano F; Di Giorgi Gerevini V; Falchetti ML; Fernandez E; Maira G; Peschle C; Parati E
    Neurosurgery; 2005 Nov; 57(5):1014-25; discussion 1014-25. PubMed ID: 16284571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury.
    White RE; Rao M; Gensel JC; McTigue DM; Kaspar BK; Jakeman LB
    J Neurosci; 2011 Oct; 31(42):15173-87. PubMed ID: 22016551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish.
    Yu YM; Cristofanilli M; Valiveti A; Ma L; Yoo M; Morellini F; Schachner M
    Neuroscience; 2011 Jun; 183():238-50. PubMed ID: 21443931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b.
    Powell C; Elsaeidi F; Goldman D
    J Neurosci; 2012 Jan; 32(3):1096-109. PubMed ID: 22262907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae.
    Ceci ML; Mardones-Krsulovic C; Sánchez M; Valdivia LE; Allende ML
    Neural Dev; 2014 Oct; 9():22. PubMed ID: 25326036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord.
    Johnson K; Barragan J; Bashiruddin S; Smith CJ; Tyrrell C; Parsons MJ; Doris R; Kucenas S; Downes GB; Velez CM; Schneider C; Sakai C; Pathak N; Anderson K; Stein R; Devoto SH; Mumm JS; Barresi MJ
    Glia; 2016 Jul; 64(7):1170-89. PubMed ID: 27100776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish.
    Liu D; Yu Y; Schachner M
    Exp Neurol; 2014 Nov; 261():196-205. PubMed ID: 24929056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular characterization of early and late retinal stem cells/progenitors: differential regulation of proliferation and context dependent role of Notch signaling.
    James J; Das AV; Rahnenführer J; Ahmad I
    J Neurobiol; 2004 Dec; 61(3):359-76. PubMed ID: 15452852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.