These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22649245)

  • 1. Prefrontal neurons represent winning and losing during competitive video shooting games between monkeys.
    Hosokawa T; Watanabe M
    J Neurosci; 2012 May; 32(22):7662-71. PubMed ID: 22649245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Egalitarian reward contingency in competitive games and primate prefrontal neuronal activity.
    Hosokawa T; Watanabe M
    Front Neurosci; 2015; 9():165. PubMed ID: 26029039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The opponent matters: elevated FMRI reward responses to winning against a human versus a computer opponent during interactive video game playing.
    Kätsyri J; Hari R; Ravaja N; Nummenmaa L
    Cereb Cortex; 2013 Dec; 23(12):2829-39. PubMed ID: 22952277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Axis-Tuned Cells in the Monkey Lateral Prefrontal Cortex during a Path-Planning Task.
    Sakamoto K; Saito N; Yoshida S; Mushiake H
    J Neurosci; 2020 Jan; 40(1):203-219. PubMed ID: 31719167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of strategic reasoning during competitive games.
    Seo H; Cai X; Donahue CH; Lee D
    Science; 2014 Oct; 346(6207):340-3. PubMed ID: 25236468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards.
    Hikosaka K; Watanabe M
    Cereb Cortex; 2000 Mar; 10(3):263-71. PubMed ID: 10731221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional significance of delay-period activity of primate prefrontal neurons in relation to spatial working memory and reward/omission-of-reward expectancy.
    Watanabe M; Hikosaka K; Sakagami M; Shirakawa S
    Exp Brain Res; 2005 Oct; 166(2):263-76. PubMed ID: 16034567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex.
    Tsujimoto S; Sawaguchi T
    J Neurophysiol; 2005 Jun; 93(6):3687-92. PubMed ID: 15634707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of multidimensional representations of task phases in the lateral prefrontal cortex.
    Saga Y; Iba M; Tanji J; Hoshi E
    J Neurosci; 2011 Jul; 31(29):10648-65. PubMed ID: 21775608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task.
    Wallis JD; Miller EK
    Eur J Neurosci; 2003 Oct; 18(7):2069-81. PubMed ID: 14622240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-period activity in primate dorsolateral prefrontal and orbitofrontal neurons is affected by reward schedules.
    Ichihara-Takeda S; Funahashi S
    J Cogn Neurosci; 2006 Feb; 18(2):212-26. PubMed ID: 16494682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog.
    Mansouri FA; Matsumoto K; Tanaka K
    J Neurosci; 2006 Mar; 26(10):2745-56. PubMed ID: 16525054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coding and monitoring of motivational context in the primate prefrontal cortex.
    Watanabe M; Hikosaka K; Sakagami M; Shirakawa S
    J Neurosci; 2002 Mar; 22(6):2391-400. PubMed ID: 11896178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of cognitive and motivational context information in the primate prefrontal cortex.
    Watanabe M; Sakagami M
    Cereb Cortex; 2007 Sep; 17 Suppl 1():i101-9. PubMed ID: 17725993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reward-related choices determine information timing and flow across macaque lateral prefrontal cortex.
    Tang H; Bartolo R; Averbeck BB
    Nat Commun; 2021 Feb; 12(1):894. PubMed ID: 33563989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal cortex activity related to abstract response strategies.
    Genovesio A; Brasted PJ; Mitz AR; Wise SP
    Neuron; 2005 Jul; 47(2):307-20. PubMed ID: 16039571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural activity in monkey prefrontal cortex is modulated by task context and behavioral instruction during delayed-match-to-sample and conditional prosaccade-antisaccade tasks.
    Johnston K; Everling S
    J Cogn Neurosci; 2006 May; 18(5):749-65. PubMed ID: 16768375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic and extrinsic motivational orientations in the competitive context: an examination of person-situation interactions.
    Abuhamdeh S; Csikszentmihalyi M
    J Pers; 2009 Oct; 77(5):1615-35. PubMed ID: 19678872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in reward processing between putative cell types in primate prefrontal cortex.
    Fan H; Pan X; Wang R; Sakagami M
    PLoS One; 2017; 12(12):e0189771. PubMed ID: 29261734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex.
    Luk CH; Wallis JD
    J Neurosci; 2009 Jun; 29(23):7526-39. PubMed ID: 19515921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.