These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 22649274)
1. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Trapero A; Ahrazem O; Rubio-Moraga A; Jimeno ML; Gómez MD; Gómez-Gómez L Plant Physiol; 2012 Aug; 159(4):1335-54. PubMed ID: 22649274 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. Mottaghipisheh J; Mahmoodi Sourestani M; Kiss T; Horváth A; Tóth B; Ayanmanesh M; Khamushi A; Csupor D J Pharm Biomed Anal; 2020 May; 184():113183. PubMed ID: 32105944 [TBL] [Abstract][Full Text] [Related]
3. A flavonoid 3-O-glucoside:2"-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. Yonekura-Sakakibara K; Nakabayashi R; Sugawara S; Tohge T; Ito T; Koyanagi M; Kitajima M; Takayama H; Saito K Plant J; 2014 Sep; 79(5):769-82. PubMed ID: 24916675 [TBL] [Abstract][Full Text] [Related]
4. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. Moraga AR; Mozos AT; Ahrazem O; Gómez-Gómez L BMC Plant Biol; 2009 Aug; 9():109. PubMed ID: 19695093 [TBL] [Abstract][Full Text] [Related]
5. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals. Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441 [TBL] [Abstract][Full Text] [Related]
6. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Moraga AR; Nohales PF; Pérez JA; Gómez-Gómez L Planta; 2004 Oct; 219(6):955-66. PubMed ID: 15605174 [TBL] [Abstract][Full Text] [Related]
7. The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors. Tsaftaris A; Pasentsis K; Makris A; Darzentas N; Polidoros A; Kalivas A; Argiriou A J Plant Physiol; 2011 Sep; 168(14):1675-84. PubMed ID: 21621873 [TBL] [Abstract][Full Text] [Related]
8. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694 [TBL] [Abstract][Full Text] [Related]
10. Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria x ananassa) achene and receptacle. Griesser M; Vitzthum F; Fink B; Bellido ML; Raasch C; Munoz-Blanco J; Schwab W J Exp Bot; 2008; 59(10):2611-25. PubMed ID: 18487633 [TBL] [Abstract][Full Text] [Related]
11. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Jackson RG; Kowalczyk M; Li Y; Higgins G; Ross J; Sandberg G; Bowles DJ Plant J; 2002 Nov; 32(4):573-83. PubMed ID: 12445128 [TBL] [Abstract][Full Text] [Related]
12. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497 [TBL] [Abstract][Full Text] [Related]
13. Novel Insight into Utilization of Flavonoid Glycosides and Biological Properties of Saffron ( Sun C; Nile SH; Zhang Y; Qin L; El-Seedi HR; Daglia M; Kai G J Agric Food Chem; 2020 Sep; 68(39):10685-10696. PubMed ID: 32924469 [TBL] [Abstract][Full Text] [Related]
14. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Ahrazem O; Trapero A; Gómez MD; Rubio-Moraga A; Gómez-Gómez L Genomics; 2010 Oct; 96(4):239-50. PubMed ID: 20633636 [TBL] [Abstract][Full Text] [Related]
15. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg3 encoding flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase. Di S; Yan F; Rodas FR; Rodriguez TO; Murai Y; Iwashina T; Sugawara S; Mori T; Nakabayashi R; Yonekura-Sakakibara K; Saito K; Takahashi R BMC Plant Biol; 2015 May; 15():126. PubMed ID: 26002063 [TBL] [Abstract][Full Text] [Related]
16. Isolation of a CENTRORADIALIS/TERMINAL FLOWER1 homolog in saffron (Crocus sativus L.): characterization and expression analysis. Tsaftaris A; Pasentsis K; Kalivas A; Michailidou S; Madesis P; Argiriou A Mol Biol Rep; 2012 Aug; 39(8):7899-910. PubMed ID: 22535321 [TBL] [Abstract][Full Text] [Related]
17. The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron's apocarotenoid precursors. Ahrazem O; Rubio-Moraga A; López RC; Gómez-Gómez L J Exp Bot; 2010; 61(1):105-19. PubMed ID: 19767307 [TBL] [Abstract][Full Text] [Related]
18. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. Jones P; Messner B; Nakajima J; Schäffner AR; Saito K J Biol Chem; 2003 Nov; 278(45):43910-8. PubMed ID: 12900416 [TBL] [Abstract][Full Text] [Related]
19. Glucosylation of flavonols by Escherichia coli expressing glucosyltransferase from rice (Oryza sativa). Kim JH; Shin KH; Ko JH; Ahn JH J Biosci Bioeng; 2006 Aug; 102(2):135-7. PubMed ID: 17027877 [TBL] [Abstract][Full Text] [Related]
20. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis. Roepke J; Gordon HOW; Neil KJA; Gidda S; Mullen RT; Freixas Coutin JA; Bray-Stone D; Bozzo GG Plant Cell Physiol; 2017 Jun; 58(6):1030-1047. PubMed ID: 28419331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]