BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22649534)

  • 1. Expression-dependent folding of interphase chromatin.
    Jerabek H; Heermann DW
    PLoS One; 2012; 7(5):e37525. PubMed ID: 22649534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropic organization of interphase chromosomes.
    Cook PR; Marenduzzo D
    J Cell Biol; 2009 Sep; 186(6):825-34. PubMed ID: 19752020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-driven looping provides a consistent framework for chromatin organization.
    Bohn M; Heermann DW
    PLoS One; 2010 Aug; 5(8):e12218. PubMed ID: 20811620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Topology of chromosomes in somatic cells. Part 1].
    Zegało M; Wiland E; Kurpisz M
    Postepy Hig Med Dosw (Online); 2006; 60():331-42. PubMed ID: 16819432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially confined folding of chromatin in the interphase nucleus.
    Mateos-Langerak J; Bohn M; de Leeuw W; Giromus O; Manders EM; Verschure PJ; Indemans MH; Gierman HJ; Heermann DW; van Driel R; Goetze S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3812-7. PubMed ID: 19234129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Looping probabilities in model interphase chromosomes.
    Rosa A; Becker NB; Everaers R
    Biophys J; 2010 Jun; 98(11):2410-9. PubMed ID: 20513384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.
    Rosa A
    Methods Mol Biol; 2022; 2301():235-258. PubMed ID: 34415539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations.
    Branco MR; Pombo A
    PLoS Biol; 2006 May; 4(5):e138. PubMed ID: 16623600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells.
    Hihara S; Pack CG; Kaizu K; Tani T; Hanafusa T; Nozaki T; Takemoto S; Yoshimi T; Yokota H; Imamoto N; Sako Y; Kinjo M; Takahashi K; Nagai T; Maeshima K
    Cell Rep; 2012 Dec; 2(6):1645-56. PubMed ID: 23246002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genome folding mechanism in yeast.
    Kimura H; Shimooka Y; Nishikawa J; Miura O; Sugiyama S; Yamada S; Ohyama T
    J Biochem; 2013 Aug; 154(2):137-47. PubMed ID: 23620598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological interactions between ring polymers: Implications for chromatin loops.
    Bohn M; Heermann DW
    J Chem Phys; 2010 Jan; 132(4):044904. PubMed ID: 20113063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.
    Benedetti F; Dorier J; Burnier Y; Stasiak A
    Nucleic Acids Res; 2014 Mar; 42(5):2848-55. PubMed ID: 24366878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of loops on the order of eukaryotes and prokaryotes.
    Hofmann A; Heermann DW
    FEBS Lett; 2015 Oct; 589(20 Pt A):2958-65. PubMed ID: 25912650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.
    Belmont AS; Hu Y; Sinclair PB; Wu W; Bian Q; Kireev I
    Cold Spring Harb Symp Quant Biol; 2010; 75():453-60. PubMed ID: 21467143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
    Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexity of chromatin folding is captured by the strings and binders switch model.
    Barbieri M; Chotalia M; Fraser J; Lavitas LM; Dostie J; Pombo A; Nicodemi M
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16173-8. PubMed ID: 22988072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.