BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22649535)

  • 1. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations.
    Sibole SC; Erdemir A
    PLoS One; 2012; 7(5):e37538. PubMed ID: 22649535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking.
    Tanska P; Mononen ME; Korhonen RK
    J Biomech; 2015 Jun; 48(8):1397-406. PubMed ID: 25795269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution - Analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage.
    Tanska P; Venäläinen MS; Erdemir A; Korhonen RK
    J Biomech; 2020 Mar; 101():109648. PubMed ID: 32019679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics.
    Khoshgoftar M; Torzilli PA; Maher SA
    J Orthop Res; 2018 Feb; 36(2):721-729. PubMed ID: 29044742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow.
    Erdemir A; Bennetts C; Davis S; Reddy A; Sibole S
    Interface Focus; 2015 Apr; 5(2):20140081. PubMed ID: 25844153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression.
    Guo H; Torzilli PA
    Acta Biomater; 2016 Jan; 29():170-179. PubMed ID: 26525115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions.
    Argote PF; Kaplan JT; Poon A; Xu X; Cai L; Emery NC; Pierce DM; Neu CP
    Osteoarthritis Cartilage; 2019 Dec; 27(12):1822-1830. PubMed ID: 31526876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint.
    Clark AL; Barclay LD; Matyas JR; Herzog W
    J Biomech; 2003 Apr; 36(4):553-68. PubMed ID: 12600346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelationship of cartilage composition and chondrocyte mechanics after a partial meniscectomy in the rabbit knee joint - Experimental and numerical analysis.
    Ronkainen AP; Tanska P; Fick JM; Herzog W; Korhonen RK
    J Biomech; 2019 Jan; 83():65-75. PubMed ID: 30501912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution.
    Halloran JP; Sibole SC; Erdemir A
    Biomech Model Mechanobiol; 2018 Feb; 17(1):159-168. PubMed ID: 28836010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth and strain rate-dependent mechanical response of chondrocytes in reserve zone cartilage subjected to compressive loading.
    Kazemi M; Williams JL
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1477-1493. PubMed ID: 33844092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of matrix tension-compression nonlinearity and fixed negative charges on chondrocyte responses in cartilage.
    Likhitpanichkul M; Guo XE; Mow VC
    Mol Cell Biomech; 2005 Dec; 2(4):191-204. PubMed ID: 16705865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of chondrocytes in articular cartilage under compressive load: a morphological study.
    Kääb MJ; Richards RG; Ito K; ap Gwynn I; Nötzli HP
    Cells Tissues Organs; 2003; 175(3):133-9. PubMed ID: 14663156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.