These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22649535)

  • 21. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint.
    Hosseini A; Van de Velde SK; Kozanek M; Gill TJ; Grodzinsky AJ; Rubash HE; Li G
    Osteoarthritis Cartilage; 2010 Jul; 18(7):909-16. PubMed ID: 20434573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-situ measurements of chondrocyte deformation under transient loading.
    Chahine NO; Hung CT; Ateshian GA
    Eur Cell Mater; 2007 May; 13():100-11; discussion 111. PubMed ID: 17538899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of stress on knee cartilage during kneeling and standing using finite element models.
    Wang Y; Fan Y; Zhang M
    Med Eng Phys; 2014 Apr; 36(4):439-47. PubMed ID: 24508046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chondrocyte deformation under extreme tissue strain in two regions of the rabbit knee joint.
    Madden R; Han SK; Herzog W
    J Biomech; 2013 Feb; 46(3):554-60. PubMed ID: 23089458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of a Medial Knee Unloading Implant on Tibiofemoral Joint Mechanics During Walking.
    Morgan OJ; Hillstrom HJ; Ranawat A; Fragomen AT; Rozbruch SR; Hillstrom R
    J Orthop Res; 2019 Oct; 37(10):2149-2156. PubMed ID: 31119801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deformation of articular cartilage during static loading of a knee joint--experimental and finite element analysis.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Salo J; Korhonen RK
    J Biomech; 2014 Jul; 47(10):2467-74. PubMed ID: 24813824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study.
    Moo EK; Herzog W; Han SK; Abu Osman NA; Pingguan-Murphy B; Federico S
    Biomech Model Mechanobiol; 2012 Sep; 11(7):983-93. PubMed ID: 22234779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational aspects in mechanical modeling of the articular cartilage tissue.
    Mohammadi H; Mequanint K; Herzog W
    Proc Inst Mech Eng H; 2013 Apr; 227(4):402-20. PubMed ID: 23637216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chondrocyte Deformations Under Mild Dynamic Loading Conditions.
    Komeili A; Otoo BS; Abusara Z; Sibole S; Federico S; Herzog W
    Ann Biomed Eng; 2021 Feb; 49(2):846-857. PubMed ID: 32959133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ chondrocyte viscoelasticity.
    Han SK; Madden R; Abusara Z; Herzog W
    J Biomech; 2012 Sep; 45(14):2450-6. PubMed ID: 22884037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of cartilage deformation on the laxity of the knee joint.
    Huss RA; Holstein H; O'Connor JJ
    Proc Inst Mech Eng H; 1999; 213(1):19-32. PubMed ID: 10087901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2014 Aug; 47(11):2721-9. PubMed ID: 24882738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1999 Jun; 32(6):563-72. PubMed ID: 10332619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multiscale synthesis: characterizing acute cartilage failure under an aggregate tibiofemoral joint loading.
    Adouni M; Faisal TR; Gaith M; Dhaher YY
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1563-1575. PubMed ID: 31069591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An MRI-compatible loading device to assess knee joint cartilage deformation: Effect of preloading and inter-test repeatability.
    Wang H; Koff MF; Potter HG; Warren RF; Rodeo SA; Maher SA
    J Biomech; 2015 Sep; 48(12):2934-40. PubMed ID: 26303166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.