These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22649622)

  • 21. De novo sequencing of plant genomes using second-generation technologies.
    Imelfort M; Edwards D
    Brief Bioinform; 2009 Nov; 10(6):609-18. PubMed ID: 19933209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.
    Du J; Bjornson RD; Zhang ZD; Kong Y; Snyder M; Gerstein MB
    PLoS Comput Biol; 2009 Jul; 5(7):e1000432. PubMed ID: 19593373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gen2Epi: an automated whole-genome sequencing pipeline for linking full genomes to antimicrobial susceptibility and molecular epidemiological data in Neisseria gonorrhoeae.
    Singh R; Dillon JR; Demczuk W; Kusalik A
    BMC Genomics; 2019 Mar; 20(1):165. PubMed ID: 30832565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo assembly of short sequence reads.
    Paszkiewicz K; Studholme DJ
    Brief Bioinform; 2010 Sep; 11(5):457-72. PubMed ID: 20724458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current state-of-art of sequencing technologies for plant genomics research.
    Thudi M; Li Y; Jackson SA; May GD; Varshney RK
    Brief Funct Genomics; 2012 Jan; 11(1):3-11. PubMed ID: 22345601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing.
    Dhar R; Seethy A; Pethusamy K; Singh S; Rohil V; Purkayastha K; Mukherjee I; Goswami S; Singh R; Raj A; Srivastava T; Acharya S; Rajashekhar B; Karmakar S
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Single-Molecule Sequencing Technologies for Structural Variant Detection in Two Swedish Human Genomes.
    Fatima N; Petri A; Gyllensten U; Feuk L; Ameur A
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33266238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing.
    Edge P; Bansal V
    Nat Commun; 2019 Oct; 10(1):4660. PubMed ID: 31604920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of De Novo Assembly Strategies for Bacterial Genomes.
    Zhang P; Jiang D; Wang Y; Yao X; Luo Y; Yang Z
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.
    Ma PF; Guo ZH; Li DZ
    PLoS One; 2012; 7(1):e30297. PubMed ID: 22272330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SNP discovery by high-throughput sequencing in soybean.
    Wu X; Ren C; Joshi T; Vuong T; Xu D; Nguyen HT
    BMC Genomics; 2010 Aug; 11():469. PubMed ID: 20701770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Sequencing of Leishmania infantum Causing Cutaneous Leishmaniosis from a Turkish Isolate with Next-Generation Sequencing Technology.
    Guldemir D; Usluca S; Nalbantoglu AS
    Acta Parasitol; 2021 Mar; 66(1):75-80. PubMed ID: 32691361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.
    Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP
    mBio; 2015 Aug; 6(4):. PubMed ID: 26286689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats.
    Wicker T; Narechania A; Sabot F; Stein J; Vu GT; Graner A; Ware D; Stein N
    BMC Genomics; 2008 Oct; 9():518. PubMed ID: 18976483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short clones or long clones? A simulation study on the use of paired reads in metagenomics.
    Mitra S; Schubach M; Huson DH
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20122183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos).
    Kraus RH; Kerstens HH; Van Hooft P; Crooijmans RP; Van Der Poel JJ; Elmberg J; Vignal A; Huang Y; Li N; Prins HH; Groenen MA
    BMC Genomics; 2011 Mar; 12():150. PubMed ID: 21410945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D.
    Jenjaroenpun P; Wongsurawat T; Pereira R; Patumcharoenpol P; Ussery DW; Nielsen J; Nookaew I
    Nucleic Acids Res; 2018 Apr; 46(7):e38. PubMed ID: 29346625
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.