These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22649934)

  • 41. Comparison of volatile constituents extracted from model grape juice and model wine by stir bar sorptive extraction-gas chromatography-mass spectrometry.
    Caven-Quantrill DJ; Buglass AJ
    J Chromatogr A; 2011 Feb; 1218(7):875-81. PubMed ID: 21215408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.
    Han B; Jiang X; Hou X; Zheng C
    Anal Chem; 2014 Jan; 86(1):936-42. PubMed ID: 24328147
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of lanthanides in synthetic standards by reversed-phase high-performance liquid chromatography with the aid of a weighted least-squares regression model estimation of method sensitivities and detection limits.
    Santoyo E; Verma SP
    J Chromatogr A; 2003 May; 997(1-2):171-82. PubMed ID: 12830890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison and validation of 2 analytical methods for the determination of free fatty acids in dairy products by gas chromatography with flame ionization detection.
    Mannion DT; Furey A; Kilcawley KN
    J Dairy Sci; 2016 Jul; 99(7):5047-5063. PubMed ID: 27085405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).
    Genisheva Z; Quintelas C; Mesquita DP; Ferreira EC; Oliveira JM; Amaral AL
    Food Chem; 2018 Apr; 246():172-178. PubMed ID: 29291836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differentiation of raw spirits of rye, corn and potato using chromatographic profiles of volatile compounds.
    Ziółkowska A; Jeleń HH
    J Sci Food Agric; 2012 Oct; 92(13):2630-7. PubMed ID: 22495666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection.
    Tiscione NB; Alford I; Yeatman DT; Shan X
    J Anal Toxicol; 2011 Sep; 35(7):501-11. PubMed ID: 21871160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Forced degradation and impurity profiling: recent trends in analytical perspectives.
    Jain D; Basniwal PK
    J Pharm Biomed Anal; 2013 Dec; 86():11-35. PubMed ID: 23969330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methods to determine response factors for infrared gas imagers used as quantitative measurement devices.
    Zeng Y; Morris J; Sanders A; Mutyala S; Zeng C
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1180-1191. PubMed ID: 27723435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine.
    Wen Y; Lopez R; Ferreira V
    J Chromatogr A; 2018 Jan; 1534():130-138. PubMed ID: 29306634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography.
    Krupčík J; Májek P; Gorovenko R; Blaško J; Kubinec R; Sandra P
    J Chromatogr A; 2015 May; 1396():117-30. PubMed ID: 25907667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative and fingerprinting analysis of Pogostemon cablin based on GC-FID combined with chemometrics.
    Yang Y; Kong W; Feng H; Dou X; Zhao L; Xiao Q; Yang M
    J Pharm Biomed Anal; 2016 Mar; 121():84-90. PubMed ID: 26799976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of major compounds in sweet wines by headspace solid-phase microextraction and gas chromatography.
    Rodríguez-Bencomo JJ; Conde JE; Garcá-Montelongo F; Pérez-Trujillo JP
    J Chromatogr A; 2003 Mar; 991(1):13-22. PubMed ID: 12703897
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development, optimization and validation of a multimethod for the determination of 36 mycotoxins in wines by liquid chromatography-tandem mass spectrometry.
    Pizzutti IR; de Kok A; Scholten J; Righi LW; Cardoso CD; Rohers GN; da Silva RC
    Talanta; 2014 Nov; 129():352-63. PubMed ID: 25127606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of a gas chromatography-optical fibre (GC-OF) detector with a gas chromatography-flame ionization detector (GC-FID) for determination of alcoholic compounds in industrial atmospheres.
    Silva LI; Rocha-Santos TA; Duarte AC
    Talanta; 2008 Jul; 76(2):395-9. PubMed ID: 18585296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ethanol concentration in 56 refillable electronic cigarettes liquid formulations determined by headspace gas chromatography with flame ionization detector (HS-GC-FID).
    Poklis JL; Wolf CE; Peace MR
    Drug Test Anal; 2017 Oct; 9(10):1637-1640. PubMed ID: 28332307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. InnOscent system: Advancing flavor analysis using an original gas chromatographic analytical device.
    Villière A; Le Roy S; Fillonneau C; Prost C
    J Chromatogr A; 2018 Feb; 1535():129-140. PubMed ID: 29329885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A nebulizer interface for liquid chromatography - Flame ionization detection: Development and validation.
    Becker C; Jochmann MA; Teutenberg T; Schmidt TC
    Talanta; 2020 Jan; 206():120229. PubMed ID: 31514869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis.
    Rodríguez-Bencomo JJ; Muñoz-González C; Andújar-Ortiz I; Martín-Álvarez PJ; Moreno-Arribas MV; Pozo-Bayón MÁ
    J Sci Food Agric; 2011 Oct; 91(13):2484-94. PubMed ID: 21732381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of calibration data in capillary electrophoresis using artificial neural networks to increase precision of analysis.
    Polásková P; Bocaz G; Li H; Havel J
    J Chromatogr A; 2002 Dec; 979(1-2):59-67. PubMed ID: 12498233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.