BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22650239)

  • 1. From multiply active natural product to candidate drug? Antibacterial (and other) minor groove binders for DNA.
    Suckling C
    Future Med Chem; 2012 May; 4(8):971-89. PubMed ID: 22650239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amide isosteres in structure-activity studies of antibacterial minor groove binders.
    Khalaf AI; Anthony N; Breen D; Donoghue G; Mackay SP; Scott FJ; Suckling CJ
    Eur J Med Chem; 2011 Nov; 46(11):5343-55. PubMed ID: 21908079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA minor groove binders as potential antitumor and antimicrobial agents.
    Baraldi PG; Bovero A; Fruttarolo F; Preti D; Tabrizi MA; Pavani MG; Romagnoli R
    Med Res Rev; 2004 Jul; 24(4):475-528. PubMed ID: 15170593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural product DNA major groove binders.
    Hamilton PL; Arya DP
    Nat Prod Rep; 2012 Feb; 29(2):134-43. PubMed ID: 22183179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity in the actions of drugs that bind in the DNA minor groove.
    Albert FG; Eckdahl TT; Fitzgerald DJ; Anderson JN
    Biochemistry; 1999 Aug; 38(31):10135-46. PubMed ID: 10433722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry of DNA minor groove binding agents.
    Khan GS; Shah A; Zia-ur-Rehman ; Barker D
    J Photochem Photobiol B; 2012 Oct; 115():105-18. PubMed ID: 22857824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minor groove binders as anti-infective agents.
    Barrett MP; Gemmell CG; Suckling CJ
    Pharmacol Ther; 2013 Jul; 139(1):12-23. PubMed ID: 23507040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis, and evaluation of thiazolidinone derivatives as antimicrobial and anti-viral agents.
    Ravichandran V; Jain A; Kumar KS; Rajak H; Agrawal RK
    Chem Biol Drug Des; 2011 Sep; 78(3):464-70. PubMed ID: 21615706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A divergent synthesis of minor groove binders with tail group variation.
    Breen D; Kennedy AR; Suckling CJ
    Org Biomol Chem; 2009 Jan; 7(1):178-86. PubMed ID: 19081961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing biologically active compounds having efficient DNA binding and cleavage activity: spectroscopic investigation.
    Raman N; Sobha S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():250-9. PubMed ID: 22484260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific interactions of minor groove binders with restriction fragments of cDNAs for H tau 40 protein and MAP kinase 2. A qualitative and quantitative footprinting study.
    Kittler L; Baguley BC; Löber G; Waring MJ
    J Mol Recognit; 1999; 12(2):121-30. PubMed ID: 10398403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A derivative of the natural compound kakuol affects DNA relaxation of topoisomerase IB inhibiting the cleavage reaction.
    Castelli S; Vieira S; D'Annessa I; Katkar P; Musso L; Dallavalle S; Desideri A
    Arch Biochem Biophys; 2013 Feb; 530(1):7-12. PubMed ID: 23262316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA binding properties of minor groove binders and their influence on the topoisomerase II cleavage reaction.
    Bell A; Kittler L; Löber G; Zimmer C
    J Mol Recognit; 1997; 10(6):245-55. PubMed ID: 9770648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-DNA sequence-dependent interactions analysed by electric linear dichroism.
    Bailly C; Hénichart JP; Colson P; Houssier C
    J Mol Recognit; 1992 Dec; 5(4):155-71. PubMed ID: 1339484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation.
    Liaras K; Geronikaki A; Glamočlija J; Cirić A; Soković M
    Bioorg Med Chem; 2011 May; 19(10):3135-40. PubMed ID: 21524583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues.
    Bailly C; Chaires JB
    Bioconjug Chem; 1998; 9(5):513-38. PubMed ID: 9736486
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities.
    Wang XL; Wan K; Zhou CH
    Eur J Med Chem; 2010 Oct; 45(10):4631-9. PubMed ID: 20708826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of novel magnolol derivatives as potential antimicrobial and antiproliferative compounds.
    Jada S; Doma MR; Singh PP; Kumar S; Malik F; Sharma A; Khan IA; Qazi GN; Kumar HM
    Eur J Med Chem; 2012 May; 51():35-41. PubMed ID: 22424614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis of some new (2-aminothiazol-4-yl)methylester derivatives as possible antimicrobial and antitubercular agents.
    Karuvalam RP; Haridas KR; Nayak SK; Row TN; Rajeesh P; Rishikesan R; Kumari NS
    Eur J Med Chem; 2012 Mar; 49():172-82. PubMed ID: 22280817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-molecule based delivery systems for alkylating antineoplastic compounds.
    Bielawski K; Bielawska A
    ChemMedChem; 2008 Apr; 3(4):536-42. PubMed ID: 18157855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.