These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22650255)

  • 41. Optimal docking area: a new method for predicting protein-protein interaction sites.
    Fernandez-Recio J; Totrov M; Skorodumov C; Abagyan R
    Proteins; 2005 Jan; 58(1):134-43. PubMed ID: 15495260
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robust principal component analysis-based prediction of protein-protein interaction hot spots.
    Sitani D; Giorgetti A; Alfonso-Prieto M; Carloni P
    Proteins; 2021 Jun; 89(6):639-647. PubMed ID: 33458895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein-Protein Docking in Drug Design and Discovery.
    Kaczor AA; Bartuzi D; Stępniewski TM; Matosiuk D; Selent J
    Methods Mol Biol; 2018; 1762():285-305. PubMed ID: 29594778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scoring optimisation of unbound protein-protein docking including protein binding site predictions.
    Schneider S; Zacharias M
    J Mol Recognit; 2012 Jan; 25(1):15-23. PubMed ID: 22213447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.
    Hu G; Xiao F; Li Y; Li Y; Vongsangnak W
    Adv Biochem Eng Biotechnol; 2017; 160():57-74. PubMed ID: 27928579
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A holistic molecular docking approach for predicting protein-protein complex structure.
    Gong X; Liu B; Chang S; Li C; Chen W; Wang C
    Sci China Life Sci; 2010 Sep; 53(9):1152-61. PubMed ID: 21104376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.
    Wei Q; La D; Kihara D
    Methods Mol Biol; 2017; 1529():279-289. PubMed ID: 27914057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Information-driven structural modelling of protein-protein interactions.
    Rodrigues JP; Karaca E; Bonvin AM
    Methods Mol Biol; 2015; 1215():399-424. PubMed ID: 25330973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features.
    Xia J; Yue Z; Di Y; Zhu X; Zheng CH
    Oncotarget; 2016 Apr; 7(14):18065-75. PubMed ID: 26934646
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of Ras-effector interactions using position energy matrices.
    Kiel C; Serrano L
    Bioinformatics; 2007 Sep; 23(17):2226-30. PubMed ID: 17599936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insight into the key interactions of bromodomain inhibitors based on molecular docking, interaction fingerprinting, molecular dynamics and binding free energy calculation.
    Ran T; Zhang Z; Liu K; Lu Y; Li H; Xu J; Xiong X; Zhang Y; Xu A; Lu S; Liu H; Lu T; Chen Y
    Mol Biosyst; 2015 May; 11(5):1295-304. PubMed ID: 25758752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational Discovery of Putative Leads for Drug Repositioning through Drug-Target Interaction Prediction.
    Coelho ED; Arrais JP; Oliveira JL
    PLoS Comput Biol; 2016 Nov; 12(11):e1005219. PubMed ID: 27893735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational ensembles, signal transduction and residue hot spots: application to drug discovery.
    Acuner Ozbabacan SE; Gursoy A; Keskin O; Nussinov R
    Curr Opin Drug Discov Devel; 2010 Sep; 13(5):527-37. PubMed ID: 20812144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces.
    Rooklin D; Wang C; Katigbak J; Arora PS; Zhang Y
    J Chem Inf Model; 2015 Aug; 55(8):1585-99. PubMed ID: 26225450
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Decrypting protein surfaces by combining evolution, geometry, and molecular docking.
    Dequeker C; Laine E; Carbone A
    Proteins; 2019 Nov; 87(11):952-965. PubMed ID: 31199528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ATTRACT: protein-protein docking in CAPRI using a reduced protein model.
    Zacharias M
    Proteins; 2005 Aug; 60(2):252-6. PubMed ID: 15981270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition.
    Lensink MF; Velankar S; Wodak SJ
    Proteins; 2017 Mar; 85(3):359-377. PubMed ID: 27865038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein docking using case-based reasoning.
    Ghoorah AW; Devignes MD; Smaïl-Tabbone M; Ritchie DW
    Proteins; 2013 Dec; 81(12):2150-8. PubMed ID: 24123156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.