These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22650258)

  • 1. Druggability of dynamic protein-protein interfaces.
    Ulucan O; Eyrisch S; Helms V
    Curr Pharm Des; 2012; 18(30):4599-606. PubMed ID: 22650258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility and small pockets at protein-protein interfaces: New insights into druggability.
    Jubb H; Blundell TL; Ascher DB
    Prog Biophys Mol Biol; 2015 Oct; 119(1):2-9. PubMed ID: 25662442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Binding Pocket Dynamics.
    Stank A; Kokh DB; Fuller JC; Wade RC
    Acc Chem Res; 2016 May; 49(5):809-15. PubMed ID: 27110726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.
    Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC
    Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation and Prediction of Druggable Binding Sites.
    Feng T; Barakat K
    Methods Mol Biol; 2018; 1762():87-103. PubMed ID: 29594769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface.
    Johnson DK; Karanicolas J
    PLoS Comput Biol; 2013; 9(3):e1002951. PubMed ID: 23505360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptic binding sites on proteins: definition, detection, and druggability.
    Vajda S; Beglov D; Wakefield AE; Egbert M; Whitty A
    Curr Opin Chem Biol; 2018 Jun; 44():1-8. PubMed ID: 29800865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.
    Sheridan RP; Maiorov VN; Holloway MK; Cornell WD; Gao YD
    J Chem Inf Model; 2010 Nov; 50(11):2029-40. PubMed ID: 20977231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural conservation of druggable hot spots in protein-protein interfaces.
    Kozakov D; Hall DR; Chuang GY; Cencic R; Brenke R; Grove LE; Beglov D; Pelletier J; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13528-33. PubMed ID: 21808046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating protein-protein interactions: from structural determinants of binding to druggability prediction to application.
    Metz A; Ciglia E; Gohlke H
    Curr Pharm Des; 2012; 18(30):4630-47. PubMed ID: 22650257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories.
    Schmidtke P; Bidon-Chanal A; Luque FJ; Barril X
    Bioinformatics; 2011 Dec; 27(23):3276-85. PubMed ID: 21967761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient pockets on protein surfaces involved in protein-protein interaction.
    Eyrisch S; Helms V
    J Med Chem; 2007 Jul; 50(15):3457-64. PubMed ID: 17602601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces.
    Rooklin D; Wang C; Katigbak J; Arora PS; Zhang Y
    J Chem Inf Model; 2015 Aug; 55(8):1585-99. PubMed ID: 26225450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pocket-based drug design: exploring pocket space.
    Zheng X; Gan L; Wang E; Wang J
    AAPS J; 2013 Jan; 15(1):228-41. PubMed ID: 23180158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.
    PĂ©rot S; Sperandio O; Miteva MA; Camproux AC; Villoutreix BO
    Drug Discov Today; 2010 Aug; 15(15-16):656-67. PubMed ID: 20685398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Based Detection of Orthosteric and Allosteric Pockets at Protein-Protein Interfaces.
    Da Silva F; Rognan D
    Methods Mol Biol; 2018; 1825():281-294. PubMed ID: 30334209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRAPP: a tool for analysis of transient binding pockets in proteins.
    Kokh DB; Richter S; Henrich S; Czodrowski P; Rippmann F; Wade RC
    J Chem Inf Model; 2013 May; 53(5):1235-52. PubMed ID: 23621586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
    Volkamer A; Eid S; Turk S; Jaeger S; Rippmann F; Fulle S
    J Chem Inf Model; 2015 Mar; 55(3):538-49. PubMed ID: 25557645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.