These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22650319)

  • 21. Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I.
    Graham SE; Syeda F; Cisneros GA
    Biochemistry; 2012 Mar; 51(12):2569-78. PubMed ID: 22397306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity.
    Kuchta RD; Benkovic P; Benkovic SJ
    Biochemistry; 1988 Sep; 27(18):6716-25. PubMed ID: 3058205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection.
    Towle-Weicksel JB; Dalal S; Sohl CD; Doublié S; Anderson KS; Sweasy JB
    J Biol Chem; 2014 Jun; 289(23):16541-50. PubMed ID: 24764311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1.
    Rothwell PJ; Waksman G
    J Biol Chem; 2007 Sep; 282(39):28884-28892. PubMed ID: 17640877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment).
    Minnick DT; Bebenek K; Osheroff WP; Turner RM; Astatke M; Liu L; Kunkel TA; Joyce CM
    J Biol Chem; 1999 Jan; 274(5):3067-75. PubMed ID: 9915846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an "ajar" intermediate conformation in the nucleotide selection mechanism.
    Wu EY; Beese LS
    J Biol Chem; 2011 Jun; 286(22):19758-67. PubMed ID: 21454515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment).
    Eger BT; Benkovic SJ
    Biochemistry; 1992 Sep; 31(38):9227-36. PubMed ID: 1327109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
    Rothwell PJ; Mitaksov V; Waksman G
    Mol Cell; 2005 Aug; 19(3):345-55. PubMed ID: 16061181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. T7 RNA Polymerase Discriminates Correct and Incorrect Nucleoside Triphosphates by Free Energy.
    Wu S; Wang J; Pu X; Li L; Li Q
    Biophys J; 2018 Apr; 114(8):1755-1761. PubMed ID: 29694856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.
    Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of DNA polymerase I Klenow fragment bound to duplex DNA.
    Beese LS; Derbyshire V; Steitz TA
    Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.
    Xu C; Maxwell BA; Suo Z
    J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the roles of desolvation and π-electron interactions during DNA polymerization.
    Motea EA; Lee I; Berdis AJ
    Chembiochem; 2013 Mar; 14(4):489-98. PubMed ID: 23404822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.
    Elias AA; Cisneros GA
    Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection.
    Radhakrishnan R; Arora K; Wang Y; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2006 Dec; 45(51):15142-56. PubMed ID: 17176036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Förster resonance energy transfer.
    Maxwell BA; Xu C; Suo Z
    Biochemistry; 2014 Mar; 53(11):1768-78. PubMed ID: 24568554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment).
    Joyce CM
    J Biol Chem; 1989 Jun; 264(18):10858-66. PubMed ID: 2659595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics study of the opening mechanism for DNA polymerase I.
    Miller BR; Parish CA; Wu EY
    PLoS Comput Biol; 2014 Dec; 10(12):e1003961. PubMed ID: 25474643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.