These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 22650420)
1. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids. Minakuchi N; Hoe K; Yamaki D; Ten-no S; Nakashima K; Goto M; Mizuhata M; Maruyama T Langmuir; 2012 Jun; 28(25):9259-66. PubMed ID: 22650420 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular gelators based on benzenetricarboxamides for ionic liquids. Ishioka Y; Minakuchi N; Mizuhata M; Maruyama T Soft Matter; 2014 Feb; 10(7):965-71. PubMed ID: 24652194 [TBL] [Abstract][Full Text] [Related]
3. Specialist gelator for ionic liquids. Hanabusa K; Fukui H; Suzuki M; Shirai H Langmuir; 2005 Nov; 21(23):10383-90. PubMed ID: 16262296 [TBL] [Abstract][Full Text] [Related]
4. Efficient air-stable organometallic low-molecular-mass gelators for ionic liquids: synthesis, aggregation and application of pyridine-bridged bis(benzimidazolylidene)-palladium complexes. Tu T; Bao X; Assenmacher W; Peterlik H; Daniels J; Dötz KH Chemistry; 2009; 15(8):1853-61. PubMed ID: 19123219 [TBL] [Abstract][Full Text] [Related]
5. Glucose-based fluorescent low-molecular mass compounds: creation of simple and versatile supramolecular gelators. Yan N; He G; Zhang H; Ding L; Fang Y Langmuir; 2010 Apr; 26(8):5909-17. PubMed ID: 20030351 [TBL] [Abstract][Full Text] [Related]
6. Dicationic organic salts: gelators for ionic liquids. D'Anna F; Rizzo C; Vitale P; Lazzara G; Noto R Soft Matter; 2014 Dec; 10(46):9281-92. PubMed ID: 25330144 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular synthons in noncovalent synthesis of a class of gelators derived from simple organic salts: instant gelation of organic fluids at room temperature via in situ synthesis of the gelators. Das UK; Trivedi DR; Adarsh NN; Dastidar P J Org Chem; 2009 Sep; 74(18):7111-21. PubMed ID: 19678626 [TBL] [Abstract][Full Text] [Related]
8. Development of Self-Healing d-Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials. Chen S; Zhang B; Zhang N; Ge F; Zhang B; Wang X; Song J ACS Appl Mater Interfaces; 2018 Feb; 10(6):5871-5879. PubMed ID: 29350518 [TBL] [Abstract][Full Text] [Related]
9. Organogels with Fe(III) complexes of phosphorus-containing amphiphiles as two-component isothermal gelators. George M; Funkhouser GP; Terech P; Weiss RG Langmuir; 2006 Aug; 22(18):7885-93. PubMed ID: 16922579 [TBL] [Abstract][Full Text] [Related]
10. Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-L-alanine amphiphiles. Pal A; Dey J Langmuir; 2011 Apr; 27(7):3401-8. PubMed ID: 21351761 [TBL] [Abstract][Full Text] [Related]
11. Spectral characterization of self-assemblies of aldopyranoside amphiphilic gelators: what is the essential structural difference between simple amphiphiles and bolaamphiphiles? Jung JH; Shinkai S; Shimizu T Chemistry; 2002 Jun; 8(12):2684-90. PubMed ID: 12391645 [TBL] [Abstract][Full Text] [Related]
14. Amino acid based low-molecular-weight ionogels as efficient dye-adsorbing agents and templates for the synthesis of TiO(2) nanoparticles. Dutta S; Das D; Dasgupta A; Das PK Chemistry; 2010 Feb; 16(5):1493-505. PubMed ID: 20020516 [TBL] [Abstract][Full Text] [Related]
15. Chiral hexa- and nonamethylene-bridged bis(L-Leu-oxalamide) gelators: the first oxalamide gels containing aggregates with a chiral morphology. Vujičić NŠ; Glasovac Z; Zweep N; van Esch JH; Vinković M; Popović J; Žinić M Chemistry; 2013 Jun; 19(26):8558-72. PubMed ID: 23653294 [TBL] [Abstract][Full Text] [Related]
16. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681 [TBL] [Abstract][Full Text] [Related]
17. Low-molecular-weight gelators based on N(alpha)-acetyl-N(epsilon)-dodecyl-L-lysine and their amphiphilic gelation properties. Suzuki M; Abe T; Hanabusa K J Colloid Interface Sci; 2010 Jan; 341(1):69-74. PubMed ID: 19846106 [TBL] [Abstract][Full Text] [Related]
18. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding. Patra T; Pal A; Dey J J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349 [TBL] [Abstract][Full Text] [Related]
19. Chiral bis(amino alcohol)oxalamide gelators-gelation properties and supramolecular organization: racemate versus pure enantiomer gelation. Makarević J; Jokić M; Raza Z; Stefanić Z; Kojić-Prodić B; Zinić M Chemistry; 2003 Nov; 9(22):5567-80. PubMed ID: 14639640 [TBL] [Abstract][Full Text] [Related]
20. Organogels with complexes of ions and phosphorus-containing amphiphiles as gelators. Spontaneous gelation by in situ complexation. George M; Funkhouser GP; Weiss RG Langmuir; 2008 Apr; 24(7):3537-44. PubMed ID: 18278965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]