These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22651706)

  • 1. The influence of seat backrest angle on perceived discomfort during exposure to vertical whole-body vibration.
    Paddan GS; Mansfield NJ; Arrowsmith CI; Rimell AN; King SK; Holmes SR
    Ergonomics; 2012; 55(8):923-36. PubMed ID: 22651706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of seat backrest angle on human performance during whole-body vibration.
    Paddan GS; Holmes SR; Mansfield NJ; Hutchinson H; Arrowsmith CI; King SK; Jones RJ; Rimell AN
    Ergonomics; 2012; 55(1):114-28. PubMed ID: 22176489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equivalent comfort contours for vertical seat vibration: effect of vibration magnitude and backrest inclination.
    Basri B; Griffin MJ
    Ergonomics; 2012; 55(8):909-22. PubMed ID: 22533797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting discomfort from whole-body vertical vibration when sitting with an inclined backrest.
    Basri B; Griffin MJ
    Appl Ergon; 2013 May; 44(3):423-34. PubMed ID: 23190680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vibration of inclined backrests: perception and discomfort of vibration applied parallel to the back in the z-axis of the body.
    Basri B; Griffin MJ
    Ergonomics; 2011 Dec; 54(12):1214-27. PubMed ID: 22103729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subjective discomfort analysis of human body in semi-supine posture caused by vertical sinusoidal vibration.
    Govindan R; Saran VH; Harsha SP
    Ergonomics; 2021 Jun; 64(6):744-754. PubMed ID: 33320790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discomfort during lateral acceleration: influence of seat cushion and backrest.
    Beard GF; Griffin MJ
    Appl Ergon; 2013 Jul; 44(4):588-94. PubMed ID: 23312371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interaction between the human body and the seat during vertical vibration: effect of inclination of the seat pan and the backrest on seat transmissibilities.
    Zhang X; Yu P; Li Y; Qiu Y; Sun C; Wang Z; Liu C
    Ergonomics; 2022 May; 65(5):691-703. PubMed ID: 34544317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of back support conditions on the apparent mass of seated occupants under horizontal vibration.
    Mandapuram SC; Rakheja S; Shiping MA; Demont RG; Boileau PE
    Ind Health; 2005 Jul; 43(3):421-35. PubMed ID: 16100919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of reclining a seat on the discomfort from vibration and shock on fast boats.
    Howarth HV; Griffin MJ
    Ergonomics; 2015; 58(7):1151-61. PubMed ID: 25323765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.
    Basri B; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1461-74. PubMed ID: 24793821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: effect of seat cushion.
    Beard GF; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1547-57. PubMed ID: 24947003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration.
    Zhang X; Zhang Q; Li Y; Liu C; Qiu Y
    Appl Ergon; 2021 May; 93():103354. PubMed ID: 33516943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive discomfort in single- and combined-axis whole-body vibration considering different seated postures.
    DeShaw J; Rahmatalla S
    Hum Factors; 2014 Aug; 56(5):850-63. PubMed ID: 25141593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency weightings for fore-and-aft vibration at the back: effect of contact location, contact area, and body posture.
    Morioka M; Griffin MJ
    Ind Health; 2010; 48(5):538-49. PubMed ID: 20953071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of backrest inclination based on biodynamic response study for prevention of low back pain.
    Shibata N; Maeda S
    Med Eng Phys; 2010 Jul; 32(6):577-83. PubMed ID: 20299270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of backrest height.
    Beard GF; Griffin MJ
    Appl Ergon; 2016 May; 54():51-61. PubMed ID: 26851464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of backrest angles on discomfort caused by fore-and-aft back vibration.
    Kato K; Hanai T
    Ind Health; 1998 Apr; 36(2):107-11. PubMed ID: 9583306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of a seated human body exposed to vertical vibrations in various automotive postures.
    Liang CC; Chiang CF
    Ind Health; 2008 Apr; 46(2):125-37. PubMed ID: 18413965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.
    Liu C; Qiu Y; Griffin MJ
    Ergonomics; 2015; 58(7):1207-19. PubMed ID: 25716324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.