These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22651868)

  • 1. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease.
    Xu Q; Seeger FH; Castillo J; Iekushi K; Boon RA; Farcas R; Manavski Y; Li YG; Assmus B; Zeiher AM; Dimmeler S
    J Am Coll Cardiol; 2012 Jun; 59(23):2107-17. PubMed ID: 22651868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction.
    Iekushi K; Seeger F; Assmus B; Zeiher AM; Dimmeler S
    Circulation; 2012 Apr; 125(14):1765-73, S1-7. PubMed ID: 22403243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy.
    Assmus B; Tonn T; Seeger FH; Yoon CH; Leistner D; Klotsche J; Schächinger V; Seifried E; Zeiher AM; Dimmeler S
    J Am Coll Cardiol; 2010 Mar; 55(13):1385-94. PubMed ID: 20338501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of miR-34c in high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction.
    Kang HJ; Kang WS; Hong MH; Choe N; Kook H; Jeong HC; Kang J; Hur J; Jeong MH; Kim YS; Ahn Y
    Cell Signal; 2015 Nov; 27(11):2241-51. PubMed ID: 26232617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression.
    Tabuchi T; Satoh M; Itoh T; Nakamura M
    Clin Sci (Lond); 2012 Aug; 123(3):161-71. PubMed ID: 22364258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Upregulating the expression of angiogenesis-related genes by transplanting autologous mononuclear bone marrow cells into myocardial infarction scar and the periphery].
    Sun YX; Zhao Q; Wang YQ; Yang C; Pan CZ; Han PP; Chen RZ; Yang YZ; Wang KQ; Ge JB
    Zhonghua Xin Xue Guan Bing Za Zhi; 2005 Mar; 33(3):260-4. PubMed ID: 15929826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation.
    Wang X; Liu P; Zhu H; Xu Y; Ma C; Dai X; Huang L; Liu Y; Zhang L; Qin C
    Brain Res Bull; 2009 Oct; 80(4-5):268-73. PubMed ID: 19683563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of bone marrow cell homing into the infarcted human myocardium.
    Hofmann M; Wollert KC; Meyer GP; Menke A; Arseniev L; Hertenstein B; Ganser A; Knapp WH; Drexler H
    Circulation; 2005 May; 111(17):2198-202. PubMed ID: 15851598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
    Seeger FH; Rasper T; Koyanagi M; Fox H; Zeiher AM; Dimmeler S
    Arterioscler Thromb Vasc Biol; 2009 Nov; 29(11):1802-9. PubMed ID: 19696399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.
    Meyer GP; Wollert KC; Lotz J; Steffens J; Lippolt P; Fichtner S; Hecker H; Schaefer A; Arseniev L; Hertenstein B; Ganser A; Drexler H
    Circulation; 2006 Mar; 113(10):1287-94. PubMed ID: 16520413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction.
    Korf-Klingebiel M; Kempf T; Sauer T; Brinkmann E; Fischer P; Meyer GP; Ganser A; Drexler H; Wollert KC
    Eur Heart J; 2008 Dec; 29(23):2851-8. PubMed ID: 18953051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease.
    Heeschen C; Lehmann R; Honold J; Assmus B; Aicher A; Walter DH; Martin H; Zeiher AM; Dimmeler S
    Circulation; 2004 Apr; 109(13):1615-22. PubMed ID: 15037527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.
    Brunner S; Huber BC; Fischer R; Groebner M; Hacker M; David R; Zaruba MM; Vallaster M; Rischpler C; Wilke A; Gerbitz A; Franz WM
    Exp Hematol; 2008 Jun; 36(6):695-702. PubMed ID: 18346841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis.
    Shiba Y; Takahashi M; Hata T; Murayama H; Morimoto H; Ise H; Nagasawa T; Ikeda U
    Cardiovasc Res; 2009 Jan; 81(1):169-77. PubMed ID: 18791205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial.
    Erbs S; Linke A; Schächinger V; Assmus B; Thiele H; Diederich KW; Hoffmann C; Dimmeler S; Tonn T; Hambrecht R; Zeiher AM; Schuler G
    Circulation; 2007 Jul; 116(4):366-74. PubMed ID: 17620510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment.
    Yoon CH; Koyanagi M; Iekushi K; Seeger F; Urbich C; Zeiher AM; Dimmeler S
    Circulation; 2010 May; 121(18):2001-11. PubMed ID: 20421519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction.
    Yousef M; Schannwell CM; Köstering M; Zeus T; Brehm M; Strauer BE
    J Am Coll Cardiol; 2009 Jun; 53(24):2262-9. PubMed ID: 19520249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-150 protects the heart from injury by inhibiting monocyte accumulation in a mouse model of acute myocardial infarction.
    Liu Z; Ye P; Wang S; Wu J; Sun Y; Zhang A; Ren L; Cheng C; Huang X; Wang K; Deng P; Wu C; Yue Z; Xia J
    Circ Cardiovasc Genet; 2015 Feb; 8(1):11-20. PubMed ID: 25466411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone-marrow-derived cell transfer after ST-elevation myocardial infarction: lessons from the BOOST trial.
    Drexler H; Meyer GP; Wollert KC
    Nat Clin Pract Cardiovasc Med; 2006 Mar; 3 Suppl 1():S65-8. PubMed ID: 16501634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model.
    Zhang ZX; Wang YS; Shi YY; Hou HY; Zhang C; Cai Y; Dou GR; Yao LB; Li FY
    Curr Eye Res; 2011 Sep; 36(9):838-49. PubMed ID: 21851170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.