BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22651868)

  • 1. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease.
    Xu Q; Seeger FH; Castillo J; Iekushi K; Boon RA; Farcas R; Manavski Y; Li YG; Assmus B; Zeiher AM; Dimmeler S
    J Am Coll Cardiol; 2012 Jun; 59(23):2107-17. PubMed ID: 22651868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction.
    Iekushi K; Seeger F; Assmus B; Zeiher AM; Dimmeler S
    Circulation; 2012 Apr; 125(14):1765-73, S1-7. PubMed ID: 22403243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy.
    Assmus B; Tonn T; Seeger FH; Yoon CH; Leistner D; Klotsche J; Schächinger V; Seifried E; Zeiher AM; Dimmeler S
    J Am Coll Cardiol; 2010 Mar; 55(13):1385-94. PubMed ID: 20338501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of miR-34c in high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction.
    Kang HJ; Kang WS; Hong MH; Choe N; Kook H; Jeong HC; Kang J; Hur J; Jeong MH; Kim YS; Ahn Y
    Cell Signal; 2015 Nov; 27(11):2241-51. PubMed ID: 26232617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression.
    Tabuchi T; Satoh M; Itoh T; Nakamura M
    Clin Sci (Lond); 2012 Aug; 123(3):161-71. PubMed ID: 22364258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Upregulating the expression of angiogenesis-related genes by transplanting autologous mononuclear bone marrow cells into myocardial infarction scar and the periphery].
    Sun YX; Zhao Q; Wang YQ; Yang C; Pan CZ; Han PP; Chen RZ; Yang YZ; Wang KQ; Ge JB
    Zhonghua Xin Xue Guan Bing Za Zhi; 2005 Mar; 33(3):260-4. PubMed ID: 15929826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation.
    Wang X; Liu P; Zhu H; Xu Y; Ma C; Dai X; Huang L; Liu Y; Zhang L; Qin C
    Brain Res Bull; 2009 Oct; 80(4-5):268-73. PubMed ID: 19683563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of bone marrow cell homing into the infarcted human myocardium.
    Hofmann M; Wollert KC; Meyer GP; Menke A; Arseniev L; Hertenstein B; Ganser A; Knapp WH; Drexler H
    Circulation; 2005 May; 111(17):2198-202. PubMed ID: 15851598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
    Seeger FH; Rasper T; Koyanagi M; Fox H; Zeiher AM; Dimmeler S
    Arterioscler Thromb Vasc Biol; 2009 Nov; 29(11):1802-9. PubMed ID: 19696399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.
    Meyer GP; Wollert KC; Lotz J; Steffens J; Lippolt P; Fichtner S; Hecker H; Schaefer A; Arseniev L; Hertenstein B; Ganser A; Drexler H
    Circulation; 2006 Mar; 113(10):1287-94. PubMed ID: 16520413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction.
    Korf-Klingebiel M; Kempf T; Sauer T; Brinkmann E; Fischer P; Meyer GP; Ganser A; Drexler H; Wollert KC
    Eur Heart J; 2008 Dec; 29(23):2851-8. PubMed ID: 18953051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease.
    Heeschen C; Lehmann R; Honold J; Assmus B; Aicher A; Walter DH; Martin H; Zeiher AM; Dimmeler S
    Circulation; 2004 Apr; 109(13):1615-22. PubMed ID: 15037527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.
    Brunner S; Huber BC; Fischer R; Groebner M; Hacker M; David R; Zaruba MM; Vallaster M; Rischpler C; Wilke A; Gerbitz A; Franz WM
    Exp Hematol; 2008 Jun; 36(6):695-702. PubMed ID: 18346841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis.
    Shiba Y; Takahashi M; Hata T; Murayama H; Morimoto H; Ise H; Nagasawa T; Ikeda U
    Cardiovasc Res; 2009 Jan; 81(1):169-77. PubMed ID: 18791205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial.
    Erbs S; Linke A; Schächinger V; Assmus B; Thiele H; Diederich KW; Hoffmann C; Dimmeler S; Tonn T; Hambrecht R; Zeiher AM; Schuler G
    Circulation; 2007 Jul; 116(4):366-74. PubMed ID: 17620510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment.
    Yoon CH; Koyanagi M; Iekushi K; Seeger F; Urbich C; Zeiher AM; Dimmeler S
    Circulation; 2010 May; 121(18):2001-11. PubMed ID: 20421519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction.
    Yousef M; Schannwell CM; Köstering M; Zeus T; Brehm M; Strauer BE
    J Am Coll Cardiol; 2009 Jun; 53(24):2262-9. PubMed ID: 19520249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-150 protects the heart from injury by inhibiting monocyte accumulation in a mouse model of acute myocardial infarction.
    Liu Z; Ye P; Wang S; Wu J; Sun Y; Zhang A; Ren L; Cheng C; Huang X; Wang K; Deng P; Wu C; Yue Z; Xia J
    Circ Cardiovasc Genet; 2015 Feb; 8(1):11-20. PubMed ID: 25466411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone-marrow-derived cell transfer after ST-elevation myocardial infarction: lessons from the BOOST trial.
    Drexler H; Meyer GP; Wollert KC
    Nat Clin Pract Cardiovasc Med; 2006 Mar; 3 Suppl 1():S65-8. PubMed ID: 16501634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model.
    Zhang ZX; Wang YS; Shi YY; Hou HY; Zhang C; Cai Y; Dou GR; Yao LB; Li FY
    Curr Eye Res; 2011 Sep; 36(9):838-49. PubMed ID: 21851170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.