These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22651887)

  • 1. Water structure-forming capabilities are temperature shifted for different models.
    Shevchuk R; Prada-Gracia D; Rao F
    J Phys Chem B; 2012 Jun; 116(25):7538-43. PubMed ID: 22651887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of water-protein hydrogen bonding on the stability of Trp-cage miniprotein. A comparison between the TIP3P and TIP4P-Ew water models.
    Paschek D; Day R; García AE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19840-7. PubMed ID: 21845272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water.
    Zielkiewicz J
    J Chem Phys; 2005 Sep; 123(10):104501. PubMed ID: 16178604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C; Abascal JL
    J Chem Phys; 2005 Oct; 123(14):144504. PubMed ID: 16238404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.
    Agarwal M; Alam MP; Chakravarty C
    J Phys Chem B; 2011 Jun; 115(21):6935-45. PubMed ID: 21553909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common features of orientational order at the temperature of maximum density for various water models: molecular dynamics study.
    Jhon YI; No KT; Jhon MS
    J Phys Chem B; 2007 Aug; 111(33):9897-9. PubMed ID: 17672501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water.
    Bandyopadhyay D; Mohan S; Ghosh SK; Choudhury N
    J Phys Chem B; 2013 Jul; 117(29):8831-43. PubMed ID: 23859122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal.
    Hu Z; Jiang J
    J Comput Chem; 2010 Jan; 31(2):371-80. PubMed ID: 19479737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and structural changes of water clusters in vacuum due to evaporation.
    Caleman C; van der Spoel D
    J Chem Phys; 2006 Oct; 125(15):154508. PubMed ID: 17059273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential.
    Shaik MS; Liem SY; Popelier PL
    J Chem Phys; 2010 May; 132(17):174504. PubMed ID: 20459171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a microscopic description of the free-energy landscape of water.
    Prada-Gracia D; Shevchuk R; Hamm P; Rao F
    J Chem Phys; 2012 Oct; 137(14):144504. PubMed ID: 23061852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
    Fuentes-Azcatl R; Alejandre J
    J Phys Chem B; 2014 Feb; 118(5):1263-72. PubMed ID: 24422512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide aggregation and solvent electrostriction in a simple zwitterionic dipeptide via molecular dynamics simulations.
    Tulip PR; Bates SP
    J Chem Phys; 2009 Jul; 131(1):015103. PubMed ID: 19586124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry.
    Miller Y; Thomas JL; Kemp DD; Finlayson-Pitts BJ; Gordon MS; Tobias DJ; Gerber RB
    J Phys Chem A; 2009 Nov; 113(46):12805-14. PubMed ID: 19817362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation.
    Ma H
    J Chem Phys; 2012 Jun; 136(21):214501. PubMed ID: 22697552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.