BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2265190)

  • 1. A simple test for the sidedness of binding of transport inhibitors.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):24-31. PubMed ID: 2265190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of choline transport in erythrocytes by n-alkanols.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):32-40. PubMed ID: 2265191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparent noncompetitive inhibition of choline transport in erythrocytes by inhibitors bound at the substrate site.
    Devés R; Krupka RM
    J Membr Biol; 1983; 74(3):183-9. PubMed ID: 6887231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Nov; 557(2):469-85. PubMed ID: 497194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The comparative specificity of the inner and outer substrate transfer sites in the choline carrier of human erythrocytes.
    Deves R; Krupka RM
    J Membr Biol; 1984; 80(1):71-80. PubMed ID: 6481794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.
    Devés R; Krupka RM
    J Membr Biol; 1987; 99(1):13-23. PubMed ID: 3430573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics of transport inhibition by noncompetitive inhibitors.
    Krupka RM
    J Membr Biol; 1983; 74(3):175-82. PubMed ID: 6887230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the simple carrier using irreversible inhibitors.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1976 Dec; 455(3):913-27. PubMed ID: 999944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of halides and bicarbonate on chloride transport in human red blood cells.
    Dalmark M
    J Gen Physiol; 1976 Feb; 67(2):223-34. PubMed ID: 1255128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of human erythrocyte choline transport in chronic renal failure.
    Riley SP; Talbot NJ; Ahmed MJ; Jouhal K; Hendry BM
    Nephrol Dial Transplant; 1997 Sep; 12(9):1921-7. PubMed ID: 9306344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier-mediated transport across the erythrocyte membrane: a rigorous test for the simple carrier model.
    Hoare DG
    Biochem J; 1972 Apr; 127(3):62P. PubMed ID: 5076209
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for the carrier model of transport from the inhibition by N-ethylmaleimide of choline transport across the human red cell membrane.
    Edwards PA
    Biochim Biophys Acta; 1973 Jun; 311(1):123-40. PubMed ID: 4718240
    [No Abstract]   [Full Text] [Related]  

  • 15. A model for erythrocyte sugar transport based on substrate-conditioned "introversion" of binding sites.
    LeFevre PG
    J Membr Biol; 1973 Jan; 11(1):1-19. PubMed ID: 4705661
    [No Abstract]   [Full Text] [Related]  

  • 16. A new approach in the kinetics of biological transport. The potential of reversible inhibition studies.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jun; 510(1):186-200. PubMed ID: 667035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 18. A model for the action of the anion exchange protein of the red blood cell.
    Rothstein A; Knauf PA; Grinstein S; Shami Y
    Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The membrane valve: a consequence of asymmetrical inhibition of membrane carriers. I. Equilibrating transport systems.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1979 Jan; 550(1):77-91. PubMed ID: 760792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes.
    de Bruijne AW; Vreeburg H; van Steveninck J
    Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.