These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 2265199)
1. Changes of polymerization and conformation of hemoglobin S induced by thiol reagents. Garel MC; Caburi-Martin J; Domenget C; Kister J; Craescu CT; Poyart C; Beuzard Y Biochim Biophys Acta; 1990 Nov; 1041(2):133-40. PubMed ID: 2265199 [TBL] [Abstract][Full Text] [Related]
2. Studies on the effect of reagent and protein charges on reactivity of the beta 93 sulfhydryl group of human hemoglobin using selected mutations. Hallaway BE; Hedlund BE; Benson ES Arch Biochem Biophys; 1980 Aug; 203(1):332-42. PubMed ID: 7406505 [No Abstract] [Full Text] [Related]
7. Covalent binding of glutathione to hemoglobin. II. Functional consequences and structural changes reflected in NMR spectra. Craescu CT; Poyart C; Schaeffer C; Garel MC; Kister J; Beuzard Y J Biol Chem; 1986 Nov; 261(31):14710-6. PubMed ID: 3771548 [TBL] [Abstract][Full Text] [Related]
8. Labeling of cysteine 231 in acetylcholinesterase from Torpedo nobiliana by the active-site directed reagent, 1-bromo-2-[14C] pinacolone. Effects of 2,2'-dipyridyl disulfide and other sulfhydryl reagents. Salih E; Howard S; Chishti SB; Cohen SG; Liu WS; Cohen JB J Biol Chem; 1993 Jan; 268(1):245-51. PubMed ID: 8416933 [TBL] [Abstract][Full Text] [Related]
9. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. Garel MC; Domenget C; Caburi-Martin J; Prehu C; Galacteros F; Beuzard Y J Biol Chem; 1986 Nov; 261(31):14704-9. PubMed ID: 3771547 [TBL] [Abstract][Full Text] [Related]
10. Sickle hemoglobin polymerization in solution and in cells. Noguchi CT; Schechter AN Annu Rev Biophys Biophys Chem; 1985; 14():239-63. PubMed ID: 3890882 [No Abstract] [Full Text] [Related]
11. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. Eager KR; Roden LD; Dulhunty AF Am J Physiol; 1997 Jun; 272(6 Pt 1):C1908-18. PubMed ID: 9227420 [TBL] [Abstract][Full Text] [Related]
12. Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active-centre properties that differ from those of papain by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Use of two-protonic-state electrophiles in the identification of catalytic-site thiol groups. Baines BS; Brocklehurst K Biochem J; 1982 Jul; 205(1):205-11. PubMed ID: 6751321 [TBL] [Abstract][Full Text] [Related]
13. Reaction between sheep liver mitochondrial aldehyde dehydrogenase and various thiol-modifying reagents. Loomes KM; Kitson TM Biochem J; 1989 Jul; 261(1):281-4. PubMed ID: 2775216 [TBL] [Abstract][Full Text] [Related]
14. The structure of partially oxygenated hemoglobin. A highly reactive intermediate toward a sulfhydryl titrant. Makino N; Sugita Y J Biol Chem; 1982 Jan; 257(1):163-8. PubMed ID: 7053364 [TBL] [Abstract][Full Text] [Related]
15. A Triazole Disulfide Compound Increases the Affinity of Hemoglobin for Oxygen and Reduces the Sickling of Human Sickle Cells. Nakagawa A; Ferrari M; Schleifer G; Cooper MK; Liu C; Yu B; Berra L; Klings ES; Safo RS; Chen Q; Musayev FN; Safo MK; Abdulmalik O; Bloch DB; Zapol WM Mol Pharm; 2018 May; 15(5):1954-1963. PubMed ID: 29634905 [TBL] [Abstract][Full Text] [Related]
16. Contact inhibition within hemoglobin S polymer by thiol reagents. Caburi-Martin J; Garel MC; Domenget C; Prehu C; Beuzard Y Biochim Biophys Acta; 1986 Nov; 874(1):82-9. PubMed ID: 3768379 [TBL] [Abstract][Full Text] [Related]
17. Effect of thiol reagents on functional properties and heme oxidation in the hemoglobin of Geochelone carbonaria. Torsoni MA; Viana RI; Barros BF; Stoppa G; Cesquini M; Ogo SH Biochem Mol Biol Int; 1996 Oct; 40(2):355-64. PubMed ID: 8896757 [TBL] [Abstract][Full Text] [Related]
19. Reactivity of the essential thiol of Klebsiella aerogenes urease. Effect of pH and ligands on thiol modification. Todd MJ; Hausinger RP J Biol Chem; 1991 Jun; 266(16):10260-7. PubMed ID: 2037578 [TBL] [Abstract][Full Text] [Related]
20. Sites, mechanism of action and lack of reversibility of primate lentivirus inactivation by preferential covalent modification of virion internal proteins. Chertova E; Crise BJ; Morcock DR; Bess JW; Henderson LE; Lifson JD Curr Mol Med; 2003 May; 3(3):265-72. PubMed ID: 12699362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]